62,749 research outputs found

    PENGEMBANGAN GAME EDUKASI MATEMATIKA BERBASIS ANDROID MENGGUNAKAN SOFWARE CONSTRUCT 2 TERHADAP KEMAMPUAN PEMAHAMAN MATEMATIS

    Get PDF
    The research method used in this research is Research and Development. The subjects in this study consisted of validation subjects consisting of material and media validators and test subjects consisting of 23 grade VII junior high school students. The research was conducted at SMP Negeri 10 Sungai Kakap. The instruments used in the study consisted of expert validation sheets, respondent questionnaires, and tests of mathematical understanding abilities. The purpose of this study was to determine the process of developing an Android-based math educational game using software construct 2 on mathematical abilities. The results of the study are as follows: The level of feasibility of an Android-based math education game using software construct 2 on the ability to understand the results obtained is 88.66% with very feasible criteria. The level of attractiveness of an Android-based math education game using software construct 2 on the ability to understand the results obtained is 88.19% with very interesting criteria. Improved mathematical understanding skills after the application of Android-based math education games. There is an increase From the calculation results obtained tcount> ttable = 8.85987> 1.71714, thus Ho is rejected Ha accepted

    Functional Skills Support Programme: Developing functional skills in physical education

    Get PDF
    This booklet is part of "... a series of 11 booklets which helps schools to implement functional skills across the curriculum. The booklets illustrate how functional skills can be applied and developed in different subjects and contexts, supporting achievement at Key Stage 3 and Key Stage 4. Each booklet contains an introduction to functional skills for subject teachers, three practical planning examples with links to related websites and resources, a process for planning and a list of additional resources to support the teaching and learning of functional skills." - The National Strategies website

    Dealing with abstraction: Case study generalisation as a method for eliciting design patterns

    Get PDF
    Developing a pattern language is a non-trivial problem. A critical requirement is a method to support pattern writers with abstraction, so as they can produce generalised patterns. In this paper, we address this issue by developing a structured process of generalisation. It is important that this process is initiated through engaging participants in identifying initial patterns, i.e. directly dealing with the 'cold-start' problem. We have found that short case study descriptions provide a productive 'way into' the process for participants. We reflect on a 1-year interdisciplinary pan-European research project involving the development of almost 30 cases and over 150 patterns. We provide example cases, detailing the process by which their associated patterns emerged. This was based on a foundation for generalisation from cases with common attributes. We discuss the merits of this approach and its implications for pattern development

    Kaleidoscope JEIRP on Learning Patterns for the Design and Deployment of Mathematical Games: Final Report

    Get PDF
    Project deliverable (D40.05.01-F)Over the last few years have witnessed a growing recognition of the educational potential of computer games. However, it is generally agreed that the process of designing and deploying TEL resources generally and games for mathematical learning specifically is a difficult task. The Kaleidoscope project, "Learning patterns for the design and deployment of mathematical games", aims to investigate this problem. We work from the premise that designing and deploying games for mathematical learning requires the assimilation and integration of deep knowledge from diverse domains of expertise including mathematics, games development, software engineering, learning and teaching. We promote the use of a design patterns approach to address this problem. This deliverable reports on the project by presenting both a connected account of the prior deliverables and also a detailed description of the methodology involved in producing those deliverables. In terms of conducting the future work which this report envisages, the setting out of our methodology is seen by us as very significant. The central deliverable includes reference to a large set of learning patterns for use by educators, researchers, practitioners, designers and software developers when designing and deploying TEL-based mathematical games. Our pattern language is suggested as an enabling tool for good practice, by facilitating pattern-specific communication and knowledge sharing between participants. We provide a set of trails as a "way-in" to using the learning pattern language. We report in this methodology how the project has enabled the synergistic collaboration of what started out as two distinct strands: design and deployment, even to the extent that it is now difficult to identify those strands within the processes and deliverables of the project. The tools and outcomes from the project can be found at: http://lp.noe-kaleidoscope.org

    Studying Games in School: a Framework for Media Education

    Get PDF
    This paper explores how media education principles can be extended to digital games, and whether the notion of ‘game literacy’ is an appropriate metaphor for thinking about the study of digital games in schools. Rationales for studying the media are presented, focusing on the importance of setting up social situations that encourage more systematic and critical understanding of games. The value of practical production, or game making, is emphasized, as a way of developing both conceptual understanding and creative abilities. Definitions of games are reviewed to explore whether the study of games is best described as a form of literacy. I conclude that games raise difficulties for existing literacy frameworks, but that it remains important to study the multiple aspects of games in an integrated way. A model for conceptualizing the study of games is presented which focuses on the relationship between design, play and culture

    Technology Solutions for Developmental Math: An Overview of Current and Emerging Practices

    Get PDF
    Reviews current practices in and strategies for incorporating innovative technology into the teaching of remedial math at the college level. Outlines challenges, emerging trends, and ways to combine technology with new concepts of instructional strategy

    Using an interactive whiteboard and a computer-programming tool to support the development of the key competencies in the New Zealand curriculum

    Get PDF
    Does children’s use of the software Scratch provide potential for the enhancement of key competencies as they work in pairs at the interactive whiteboard (IWB)? This article looks at how children using Scratch collaborated and managed their projects as they set about designing, constructing, testing and evaluating a game for others to play, a task that provided a sustained challenge over six weeks and beyond. The findings showed that the key competencies of participating, contributing, and relating to others were enhanced by the collaborative use of Scratch at the IWB, and that creative and conceptual thinking processes were sustained. Children became increasingly adept at using Scratch, and some children, previously thought to have poor social skills, began to articulate their understandings to others. While a guiding and scaffolding role was evident in teachers’ actions, close monitoring of group progress and direct input from teachers is required to keep the challenge high but achievable, and to extend children’s knowledge and thinking as they use Scratch at the IWB

    Building Middle-Level Mathematics Teachers\u27 Capacities as Teachers and Leaders: The Math in the Middle Institute Partnership

    Get PDF
    This article describes professional development for middle-level mathematics teachers offered through the Math in the Middle Institute Partnership, a National Science Foundation-funded project to build teachers’ capacities to improve mathematics learning for all students. An overview of the project, including descriptions of its goals and curriculum are provided. Detailed descriptions of two mathematics courses and one pedagogy course are offered. The mathematics courses included here are the introductory course to the Math in the Middle Institute, as well as one of the final math courses of the Institute in which participants apply mathematical knowledge and processes to real-world problems. The pedagogy course features curriculum that enables teachers to acquire an understanding of the nature and purpose of action research, and launches teachers into planning and implementing systematic inquiry in their own mathematics classrooms around topics of their choosing. The varied abilities of teachers, as well as growth in teachers’ mathematical and pedagogical capacities, are represented by several samples of student work provided within the article. In addition, mathematical and pedagogical products of student work are also provided through the project’s URL links. Improving teacher quality is identified as a national need in mathematics education and one many universities and schools across the country are working in partnership to try to address. This article describes a professional development project aimed at improving mathematics teaching and learning in the middle grades. An overview of the project, along with a close look at several of its course offerings, are presented highlighting mathematical and pedagogical goals, challenges, and accomplishments
    corecore