1,171 research outputs found

    Exploring individual user differences in the 2D/3D interaction with medical image data

    Get PDF
    User-centered design is often performed without regard to individual user differences. In this paper, we report results of an empirical study aimed to evaluate whether computer experience and demographic user characteristics would have an effect on the way people interact with the visualized medical data in a 3D virtual environment using 2D and 3D input devices. We analyzed the interaction through performance data, questionnaires and observations. The results suggest that differences in gender, age and game experience have an effect on people’s behavior and task performance, as well as on subjective\ud user preferences

    Patients' use of a home-based virtual reality system to provide rehabilitation of the upper limb following stroke

    Get PDF
    Background: A low cost, virtual reality system that translates movements of the hand, fingers and thumb into game play was designed to provide a flexible and motivating approach to increasing adherence to home based rehabilitation. Objective: Effectiveness depends on adherence, so did patients use the intervention to the recommended level. If not, what reasons did they give? Design: Prospective cohort study plus qualitative analysis of interviews. Methods: 17 patients recovering from stroke recruited to the intervention arm of a feasibility trial had the equipment left in their homes for eight weeks and were advised to use it three times a day for periods of no more than 20 minutes. Frequency and duration of use were automatically recorded. At the end of the intervention, participants were interviewed to determine barriers to using it in the recommended way. Results: Duration of use and how many days they used the equipment are presented for the 13 participants who successfully started the intervention. These figures were highly variable and could fall far short of our recommendations. There was a weak (p=0.053) positive correlation between duration and baseline reported activities of daily living. Participants reported familiarity with technology and competing commitments as barriers to use although appreciated the flexibility of the intervention and found it motivating

    Virtual Environments in Physical Therapy

    Get PDF

    Kinematics of aimed movements in ecological immersive virtual reality: a comparative study with real world

    Get PDF
    Virtual reality (VR) has recently emerged as a promising technology to rehabilitate upper limb functions after stroke. To promote the recovery of functions, retraining physiological movement patterns is essential. However, it is still unclear whether VR can elicit functional movements that are similar to those performed in the real world (RW). This study aimed to investigate the kinematics of reach-to-grasp and transport movements performed in the real world and immersive VR by examining whether kinematic differences between the two conditions exist and their extent. A within-subject repeated-measures study was conducted. A realistic setup resembling a supermarket shelf unit was built in RW and VR. The analysis compared reaching and transport gestures in VR and RW, also considering potential differences due to: (i) holding the controller needed to interact with virtual items, (ii) hand dominance, and (iii) target positions. Ten healthy young adults were enrolled in the study. Motion data analysis showed that reach-to-grasp and transport required more time in VR, and that holding the controller had no effects. No major differences occurred between the two hands. Joint angles, except for thorax rotation, and hand trajectory curvature were comparable across conditions, suggesting that VR has the potentialities to retrain physiological movement patterns. Results were satisfying, though they did not demonstrate the superiority of ecological environments in eliciting natural gestures. Further studies should determine the extent of kinematic similarity required to obtain functional gains in VR-based upper limb rehabilitation

    Development of Virtual Reality Games for Motor Rehabilitation

    Get PDF
    Motor rehabilitation is a long term, labor intensive and patient-specific process that requires one-on-one care from skilled clinicians and physiotherapists. Virtual rehabilitation is an alternative rehabilitation technology that can provide intensive motor training with minimal supervision from physiotherapists. However, virtual rehabilitation exercises lack of realism and less connected with Activities of Daily Livings. In this paper, we present six Virtual Reality games that we developed for 5DT data glove, 1-DOF IntelliStretch robot and Xbox Kinect to improve the accessibility of motor rehabilitation

    Virtuality Supports Reality for e-Health Applications

    Get PDF
    Strictly speaking the word “virtuality” or the expression “virtual reality” refers to an application for things simulated or created by the computer, which not really exist. More and more often such things are becoming equally referred with the adjective “virtual” or “digital” or mentioned with the prefixes “e-” or “cyber-”. So we know, for instance, of virtual or digital or e- or cyber- community, cash, business, greetings, books .. till even pets. The virtuality offers interesting advantages with respect to the “simple” reality, since it can reproduce, augment and even overcome the reality. The reproduction is not intended as it has been so far that a camera films a scenario from a fixed point of view and a player shows it, but today it is possible to reproduce the scene dynamically moving the point of view in practically any directions, and “real” becomes “realistic”. The virtuality can augment the reality in the sense that graphics are pulled out from a television screen (or computer/laptop/palm display) and integrated with the real world environments. In this way useful, and often in somehow essentials, information are added for the user. As an example new apps are now available even for iphone users who can obtain graphical information overlapped on camera played real scene surroundings, so directly reading the height of mountains, names of streets, lined up of satellites .., directly over the real mountains, the real streets, the real sky. But the virtuality can even overcome reality, since it can produce and make visible the hidden or inaccessible or old reality and even provide an alternative not real world. So we can virtually see deeply into the matter till atomic dimensions, realize a virtual tour in a past century or give visibility to hypothetical lands otherwise difficult or impossible to simple describe. These are the fundamental reasons for a naturally growing interest in “producing” virtuality. So here we will discuss about some of the different available methods to “produce” virtuality, in particular pointing out some steps necessary for “crossing” reality “towards” virtuality. But between these two parallel worlds, as the “real” and the “virtual” ones are, interactions can exist and this can lead to some further advantages. We will treat about the “production” and the “interaction” with the aim to focus the attention on how the virtuality can be applied in biomedical fields, since it has been demonstrated that virtual reality can furnish important and relevant benefits in e-health applications. As an example virtual tomography joins together 3D imaging anatomical features from several CT (Computerized axial Tomography) or MRI (Magnetic Resonance Imaging) images overlapped with a computer-generated kinesthetic interface so to obtain a useful tool in diagnosis and healing. With the new endovascular simulation possibilities, a head mounted display superimposes 3D images on the patient’s skin so to furnish a direction for implantable devices inside blood vessels. Among all, we chose to investigate the fields where we believe the virtual applications can furnish the meaningful advantages, i.e. in surgery simulation, in cognitive and neurological rehabilitation, in postural and motor training, in brain computer interface. We will furnish to the reader a necessary partial but at the same time fundamental view on what the virtual reality can do to improve possible medical treatment and so, at the end, resulting a better quality of our life

    Gneuropathy: Validation process at clinical environment

    Get PDF
    Spinal cord injuries are one of the most traumatic situations with a major impact on a person's quality of life. This type of injury have a extremely impact in the performance of daily life activities not only due to motor alterations but also due to the appearance of neuropathic pain Throughout the rehabilitation process the evaluation and intervention methodologies are not very systematic and are not personalized. Thus, to bridge this gap, the VR4NeuroPain was developed a technology that associates virtual reality with a glove "GNeuroPathy". The glove "GNeuroPathy" allows the collection of physiological parameters, namely to identify the electrodermic activity (EDA) while the patient carries out activities in an immersive environment. The main objective of this article is to present the validation process of the "GNeuroPathy" in clinical context. "GNeuroPathy" was applied to a group of 17 individuals with incomplete spinal cord injury. The results showed that "GNeuroPathy" is easy to apply and is suitable for comfort and texture. Data were also collected from EDA and it was found that there is a significant difference in signal amplitude in patients with low and high functionality.preprintpublishe
    corecore