2,880 research outputs found

    Event-driven displays for manipulator control

    Get PDF
    The problem of constructing event-related information displays from multidimensional data generated by proximity, force-torque and tactile sensors integrated with the terminal device of a remotely controlled manipulator is considered. Event-driven displays are constructed by using appropriate algorithms acting on sensory data in real time. Event-driven information displays lessen the operator's workload and improve control performance. The paper describes and discusses several event-driven display examples that were implemented in the JPL teleoperator project, including a brief outline of the data handling system which drives the graphics display in real time. The paper concludes with a discussion of future plans to integrate event-driven displays with visual (TV) information

    Study to design and develop remote manipulator system

    Get PDF
    Modeling of human performance in remote manipulation tasks is reported by automated procedures using computers to analyze and count motions during a manipulation task. Performance is monitored by an on-line computer capable of measuring the joint angles of both master and slave and in some cases the trajectory and velocity of the hand itself. In this way the operator's strategies with different transmission delays, displays, tasks, and manipulators can be analyzed in detail for comparison. Some progress is described in obtaining a set of standard tasks and difficulty measures for evaluating manipulator performance

    Impact of end effector technology on telemanipulation performance

    Get PDF
    Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system

    The development test flight of the flight telerobotic servicer

    Get PDF
    The Development Test Flight (DTF-1) is the first of two shuttle flights to test operations of the Flight Telerobotic Servicer (FTS) in space and to demonstrate its capabilities in performing tasks for Space Station Freedom. The DTF-1 system, which Martin Marietta Astronautics Group is designing and building for the Goddard Space Flight Center, will be flown in December, 1991, as an attached payload on the shuttle. The design of the DTF-1 system, the tests to be performed, and the data to be gathered are discussed

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Design and control of a multi-fingered robot hand provided with tactile feedback

    Get PDF
    The design, construction, control and application of a three fingered robot hand with nine degrees of freedom and built-in multi-component force sensors is described. The adopted gripper kinematics are justified and optimized with respect to grasping and manipulation flexibility. The hand was constructed with miniature motor drive systems imbedded into the fingers. The control is hierarchically structured and is implemented on a simple PC-AT computer. The hand's dexterity and intelligence are demonstrated with some experiments

    Tactile sensors for robot handling

    Get PDF
    First and second generation robots have been used cost effectively in high‐volume ‘fixed’ or ‘hard’ automated manufacturing/assembly systems. They are ‘limited‐ability’ devices using simple logic elements or primitive sensory feedback. However, in the unstructured environment of most manufacturing plants it is often necessary to locate, identify, orientate and position randomly presented components. Visual systems have been researched and developed to provide a coarse resolution outline of objects. More detailed and precise definition of parts is usually obtained by high resolution tactile sensing arrays. This paper reviews and discusses the current state of the art in tactile sensing

    Human operator performance of remotely controlled tasks: Teleoperator research conducted at NASA's George C. Marshal Space Flight Center

    Get PDF
    The capabilities within the teleoperator laboratories to perform remote and teleoperated investigations for a wide variety of applications are described. Three major teleoperator issues are addressed: the human operator, the remote control and effecting subsystems, and the human/machine system performance results for specific teleoperated tasks

    Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    Get PDF
    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed

    HERO Glove

    Get PDF
    Non-repetitive manipulation tasks that are easy for humans to perform are difficult for autonomous robots to execute. The Haptic Exoskeletal Robot Operator (HERO) Glove is a system designed for users to remotely control robot manipulators whilst providing sensory feedback to the user. This realistic haptic feedback is achieved through the use of toroidal air-filled actuators that stiffen up around the user’s fingers. Tactile sensor data is sent from the robot to the HERO Glove, where it is used to vary the pressure in the toroidal actuators to simulate the sense of touch. Curvature sensors and inertial measurement units are used to capture the glove’s pose to control the robot
    corecore