5,435 research outputs found

    Extending an industrial root controller : implementation and applications of a fast open sensor interface

    Full text link
    An overview is given of the design and implementation of a platform for fast external sensor integration in an industrial robot system called ABB S4CPlus. As an application and motivating example, the implementation of force-controlled grinding and deburring within the AUTOFETT-project is discussed. Experiences from industrial usage of the fully developed prototype confirms the appropriateness of the design choices, thus also confirming the fact that control and software need to be tightly integrated. The new sensor can be used for the prototyping and development of a wide variety of new application

    A macro-micro robot for precise force applications

    Get PDF
    This paper describes an 8 degree-of-freedom macro-micro robot capable of performing tasks which require accurate force control. Applications such as polishing, finishing, grinding, deburring, and cleaning are a few examples of tasks which need this capability. Currently these tasks are either performed manually or with dedicated machinery because of the lack of a flexible and cost effective tool, such as a programmable force-controlled robot. The basic design and control of the macro-micro robot is described in this paper. A modular high-performance multiprocessor control system was designed to provide sufficient compute power for executing advanced control methods. An 8 degree of freedom macro-micro mechanism was constructed to enable accurate tip forces. Control algorithms based on the impedance control method were derived, coded, and load balanced for maximum execution speed on the multiprocessor system

    Robotic polishing of large optical components

    Get PDF
    Lightweight space mirrors have been widely used in earth observation and astronomy applications. Many organizations and companies, such as NASA in America, ESA in Europe, SSTL in UK as well as CASC in China, have spent a lot of money and effort on researching new materials for larger size space mirrors to meet both the payload weight constraints of launch and the increased advanced manufacturing process demanded for higher observations quality. This project is aimed at robot neutral polishing of lapped, ground and polished optical substrates using an industrial FANUC robot system. The project focused on three main fields which were: robot polishing with polyurethane tool and cerium oxide, pitch polishing with pitch tool and cerium oxide, as well as polishing of a 400mm ULE component. The polishing process targets were to achieve: 1) a surface roughness (Ra) of 10 nm and a surface profile (Pt) of 6 µm and 2µm on lapped and ground substrates respectively with polyurethane based tools and 2) a surface roughness (Ra) of 2nm with a surface profile (Pt) unchanged on robot neutral polished substrates using pitch based tools. This thesis comprises four main sections: a literature review, an experimental implementation, metrology and analysis, and the final conclusions. The experiment results measured with the metrology equipment selected were analysed. Conclusions of the relationship between the polishing performance of a specific sample and the selected polishing tool, polishing slurry, tool pressure, polishing time and other parameters were drawn. Results obtained from robot neutral polishing were surface roughness (Ra) of 8-10nm and surface profile (Pt) of 6µm for 100mm square lapped and ground parts. The process scalability was demonstrated from robot neutral polishing in 45hours, a 400mm square ground component from a surface roughness (Ra) of 200nm to 10nm. There is additional work to be implemented in the future, such as the development of robot pitch polishing of robot neutral polished parts to achieve 2nm Ra

    Force Controlled Knife-Grinding with Industrial Robot

    Get PDF
    This paper investigates the application of sharpening knives using a force controlled industrial robot, for an arbitrary knife shape and orientation. The problem is divided into different parts: calibration of the knife by identifying its unknown orientation, identification of the knife blade contour and estimation of its position in the robot frame through force control, and grinding of the knife, following the path defined by the earlier identified shape, while applying the desired contact force to the revolving grinding wheels. The experimental results show that the knives can be sharpened satisfactorily. An industrial application has also been developed and tested, and it has produced a sharpening quality equal or greater to that achieved manually

    Design and implementation of robot skill programming and control

    Get PDF
    Abstract. Skill-based approach has been represented as a solution to the raising complicity of robot programming and control. The skills rely heavily on the use of sensors integrating sensor perceptions and robot actions, which enable the robot to adapt to changes and uncertainties in the real world and operate autonomously. The aim of this thesis was to design and implement a programming concept for skill-based control of industrial robots. At the theoretical part of this thesis, the industrial robot system is introduced as well as some basic concepts of robotics. This is followed by the introduction of different robot programming and 3D machine vision methods. At the last section of the theoretical part, the structure of skill-based programs is presented. In the experimental part, structure of the skills required for the “grinding with localization” -task are presented. The task includes skills such as global localization with 3D-depth sensor, scanning the object with 2D-profile scanner, precise localization of the object as well as two grinding skills: level surface grinding and straight seam grinding. Skills are programmed with an off-line programming tool and implemented in a robot cell, composed of a standard industrial robot with grinding tools, 3D-depth sensors and 2D-profile scanners. The results show that global localization can be carried out with consumer class 3D-depth sensors and more accurate local localization with an industrial high-accuracy 2D-profile scanner attached to the robot’s flange. The grinding experiments and tests were focused on finding suitable structures of the skill programs as well as to understand how the different parameters influence on the quality of the grinding.Robotin taitopohjaisten ohjelmien ohjelmointi ja testaus. Tiivistelmä. Robotin taitopohjaisia ohjelmia on esitetty ratkaisuksi robottien jatkuvasti monimutkaistuvaan ohjelmointiin. Taidot pohjautuvat erilaisten antureiden ja robotin toimintojen integroimiseen, joiden avulla robotti pystyy havainnoimaan muutokset reaalimaailmassa ja toimimaan autonomisesti. Tämän työn tavoitteena oli suunnitella ja toteuttaa taitopohjaisia ohjelmia teollisuusrobotille. Aluksi työn teoriaosuudessa esitellään teollisuusrobottijärjestelmään kuuluvia osia ja muutamia robotiikan olennaisimpia käsitteitä. Sen jälkeen käydään läpi eri robotin ohjelmointitapoja ja eri 3D-konenäön toimintaperiaatteita. Teoriaosuuden lopussa esitellään taitopohjaisten ohjelmien rakennetta. Käytännön osuudessa esitellään ”hionta paikoituksella” -tehtävän suoritukseen tarvittavien taitojen rakenne. Tehtävän vaatimia taitoja ovat muun muassa kappaleen globaalipaikoitus 3D-syvyyskameralla, kappaleen skannaus 2D-profiiliskannerilla, kappaleen tarkkapaikoitus ja kaksi eri hiontataitoa: tasomaisen pinnan ja suoran sauman hionta. Taidot ohjelmoidaan off-line ohjelmointityökalulla ja implementoidaan robottisoluun, joka muodostuu hiontatyökaluilla varustetusta teollisuusrobotista, 3D-kameroista ja 2D-profiiliskannereista. Työn tuloksista selviää, että kappaleen globaalipaikoitus voidaan suorittaa kuluttajille suunnatuilla 3D-syvyyskameroilla ja kappaleen tarkempi lokaalipaikoitus robotin ranteeseen kiinnitetyllä teollisuuden käyttämillä 2D-profiiliskannereilla. Hiontojen kokeellisessa osuudessa etsitään ohjelmien oikeanlaista rakennetta sekä muodostetaan käsitys eri parametrien vaikutuksesta hionnan laatuun

    Nonterrestrial utilization of materials: Automated space manufacturing facility

    Get PDF
    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility

    Robotic belt finishing with process control for accurate surfaces

    Get PDF
    The aerospace industry still relies on manual processes for finish applications, which can be a tedious task. In recent years, robotic automation has gained interest due to its flexibility and adaptability to provide solutions to this issue. However, these processes are difficult to automate, as the material removal rate can vary due to changes in the process variables. This work proposes an approach for automatically modeling the material removal process based on experimental data in a robotic belt grinding application. The methodology concerns the measurement of the removed mass of a test part during a finishing process using an automatic precision measurement system. Then, experimental models are used to develop a control algorithm for continuous material removal that maintains a uniform finishing process by regulating the robot’s feed rate. Next, the results for various experimental material removal models under different process conditions are presented, showing the process parameter’s influence on the removal capacity. Finally, the proposed control algorithm is validated, achieving a constant material removal rate.This research was funded by the EUROSTARS GRINDBOT project (grant number E!115077) and the Government of Navarre Doctorados Industriales program (grant number 0011-1408-2021-000021)
    • …
    corecore