10,927 research outputs found

    Maternal haemodynamic function differs in preā€eclampsia when it is associated with a smallā€forā€gestationalā€age newborn: a prospective cohort study

    Get PDF
    Objective To describe maternal haemodynamic differences in gestational hypertension with smallā€forā€gestationalā€age babies (HDP + SGA), gestational hypertension with appropriateā€forā€gestationalā€age babies (HDPā€only) and control pregnancies. Design Prospective cohort study. Setting Tertiary Hospital, UK. Population Women with gestational hypertension and healthy pregnant women. Methods Maternal haemodynamic indices were measured using a nonā€invasive Ultrasound Cardiac Output Monitor (USCOMā€1AĀ®) and corrected for gestational age and maternal characteristics using deviceā€specific reference ranges. Main outcome measures Maternal cardiac output, stroke volume, systemic vascular resistance. Results We included 114 HDP + SGA, 202 HDPā€only and 401 control pregnancies at 26ā€“41 weeks of gestation. There was no significant difference in the mean arterial blood pressure (110 versus 107 mmHg, P = 0.445) between the two HDP groups at presentation. Pregnancies complicated by HDP + SGA had significantly lower median heart rate (76 versus 85 bpm versus 83 bpm), lower cardiac output (0.85 versus 0.98 versus 0.97 MoM) and higher systemic vascular resistance (1.4 versus 1.0 versus 1.2 MoM) compared with control and HDPā€only pregnancies, respectively (all P < 0.05). Conclusion Women with HDP + SGA present with more severe haemodynamic dysfunction than HDPā€only. Even HDPā€only pregnancies exhibit impaired haemodynamic indices compared with normal pregnancies, supporting a role of the maternal cardiovascular system in gestational hypertension irrespective of fetal size. Central haemodynamic changes may play a role in the pathogenesis of preā€eclampsia and should be considered alongside placental aetiology

    Biomechanics of foetal movement.

    Get PDF
    Ā© 2015, AO Research Institute. All rights reserved.Foetal movements commence at seven weeks of gestation, with the foetal movement repertoire including twitches, whole body movements, stretches, isolated limb movements, breathing movements, head and neck movements, jaw movements (including yawning, sucking and swallowing) and hiccups by ten weeks of gestational age. There are two key biomechanical aspects to gross foetal movements; the first being that the foetus moves in a dynamically changing constrained physical environment in which the freedom to move becomes increasingly restricted with increasing foetal size and decreasing amniotic fluid. Therefore, the mechanical environment experienced by the foetus affects its ability to move freely. Secondly, the mechanical forces induced by foetal movements are crucial for normal skeletal development, as evidenced by a number of conditions and syndromes for which reduced or abnormal foetal movements are implicated, such as developmental dysplasia of the hip, arthrogryposis and foetal akinesia deformation sequence. This review examines both the biomechanical effects of the physical environment on foetal movements through discussion of intrauterine factors, such as space, foetal positioning and volume of amniotic fluid, and the biomechanical role of gross foetal movements in human skeletal development through investigation of the effects of abnormal movement on the bones and joints. This review also highlights computational simulations of foetal movements that attempt to determine the mechanical forces acting on the foetus as it moves. Finally, avenues for future research into foetal movement biomechanics are highlighted, which have potential impact for a diverse range of fields including foetal medicine, musculoskeletal disorders and tissue engineering

    Postnatal Ī²2 adrenergic treatment improves insulin sensitivity in lambs with IUGR but not persistent defects in pancreatic islets or skeletal muscle

    Get PDF
    Placental insufficiency causes intrauterine growth restriction (IUGR) and disturbances in glucose homeostasis with associated Ī² adrenergic receptor (ADRĪ²) desensitization. Our objectives were to measure insulin-sensitive glucose metabolism in neonatal lambs with IUGR and to determine whether daily treatment with ADRĪ²2 agonist and ADRĪ²1/Ī²3 antagonists for 1 month normalizes their glucose metabolism. Growth, glucose-stimulated insulin secretion (GSIS) and glucose utilization rates (GURs) were measured in control lambs, IUGR lambs and IUGR lambs treated with adrenergic receptor modifiers: clenbuterol atenolol and SR59230A (IUGR-AR). In IUGR lambs, islet insulin content and GSIS were less than in controls; however, insulin sensitivity and whole-bodyGUR were not different from controls.Of importance, ADRĪ²2 stimulation with Ī²1/Ī²3 inhibition increases both insulin sensitivity and whole-body glucose utilization in IUGR lambs. In IUGR and IUGR-AR lambs, hindlimb GURs were greater but fractional glucose oxidation rates and ex vivo skeletal muscle glucose oxidation rates were lower than controls. Glucose transporter 4 (GLUT4) was lower in IUGR and IUGR-AR skeletal muscle than in controls but GLUT1 was greater in IUGR-AR. ADRĪ²2, insulin receptor, glycogen content and citrate synthase activity were similar among groups. In IUGR and IUGR-AR lambs heart rates were greater, which was independent of cardiac ADRĪ²1 activation. We conclude that targeted ADRĪ²2 stimulation improved whole-body insulin sensitivity but minimally affected defects in GSIS and skeletal muscle glucose oxidation. We show that risk factors for developing diabetes are independent of postnatal catch-up growth in IUGR lambs as early as 1 month of age and are inherent to the islets and myocytes

    Use of Multiscale Entropy to Characterize Fetal Autonomic Development

    Get PDF
    The idea that uterine environment and adverse events during fetal development could increase the chances of the diseases in adulthood was first published by David Barker in 1998. Since then, investigators have been employing several methods and methodologies for studying and characterizing the ontological development of the fetus, e.g., fetal movement, growth and cardiac metrics. Even with most recent and developed methods such as fetal magnetocardiography (fMCG), investigators are continuously challenged to study fetal development; the fetus is inaccessible. Finding metrics that realize the full capacity of characterizing fetal ontological development remains a technological challenge. In this thesis, the use and value of multiscale entropy to characterize fetal maturation across third trimester of gestation is studied. Using multiscale entropy obtained from participants of a clinical trial, we show that MSE can characterize increasing complexity due to maturation in the fetus, and can distinguish a growing and developing fetal system from a mature system where loss of irregularity is due to compromised complexity from increasing physiologic load. MSE scales add a nonlinear metric that seems to accurately reflect the ontological development of the fetus and hold promise for future use to investigate the effects of maternal stress, intrauterine growth restriction, or predict risk for sudden infant death syndrome

    Epirubicin. A new entry in the list of fetal cardiotoxic drugs? Intrauterine death of one fetus in a twin pregnancy. Case report and review of literature

    Get PDF
    BACKGROUND: Current knowledge indicate that epirubicin administration in late pregnancy is almost devoid of any fetal cardiotoxicity. We report a twin pregnancy complicated by breast cancer in which epirubicin administration was causatively linked to the death of one twin who was small for gestational age (SGA) and in a condition of oligohydramnios and determined the onset of a transient cardiotoxicity of the surviving fetus/newborn. CASE PRESENTATION: A 38-year-old caucasic woman with a dichorionic twin pregnancy was referred to our center at 20 and 1/7Ā weeks for a suspected breast cancer, later confirmed by the histopathology report. At 31 and 3/7Ā weeks, after the second chemotherapy cycle, ultrasound examination evidenced the demise of one twin while cardiac examination revealed a monophasic diastolic ventricular filling, i.e. a diastolic dysfunction of the surviving fetus who was delivered the following day due to the occurrence of grade II placental abruption. The role of epirubicin cardiotoxicity in the death of the first twin was supported by post-mortem cardiac and placental examination and by the absence of structural or genomic abnormalities that may indicate an alternative etiology of fetal demise. The occurrence of epirubicin cardiotoxicity in the surviving newborn was confirmed by the report of high levels of troponin and transient left ventricular septal hypokinesia. CONCLUSION: Based on our findings we suggest that epirubicin administration in pregnancy should be preceded by the screening of some fetal conditions like SGA and oligohydramnios that may increase its cardiotoxicity and that, during treatment, the diastolic function of the fetal right ventricle should be specifically monitored by a pediatric cardiologist; also, epirubicin and desamethasone for lung maturation should not be closely administered since placental effects of glucocorticoids may increase epirubicin toxicity

    Phase-rectified signal averaging method to predict perinatal outcome in infants with very preterm fetal growth restriction- a secondary analysis of TRUFFLE-trial

    Get PDF
    BACKGROUND: Phase-rectified signal averaging, an innovative signal processing technique, can be used to investigate quasi-periodic oscillations in noisy, nonstationary signals that are obtained from fetal heart rate. Phase-rectified signal averaging is currently the best method to predict survival after myocardial infarction in adult cardiology. Application of this method to fetal medicine has established significantly better identification than with short-term variation by computerized cardiotocography of growth-restricted fetuses. OBJECTIVE: The aim of this study was to determine the longitudinal progression of phase-rectified signal averaging indices in severely growth-restricted human fetuses and the prognostic accuracy of the technique in relation to perinatal and neurologic outcome. STUDY DESIGN: Raw data from cardiotocography monitoring of 279 human fetuses were obtained from 8 centers that took part in the multicenter European ā€œTRUFFLEā€ trial on optimal timing of delivery in fetal growth restriction. Average acceleration and deceleration capacities were calculated by phase-rectified signal averaging to establish progression from 5 days to 1 day before delivery and were compared with short-term variation progression. The receiver operating characteristic curves of average acceleration and deceleration capacities and short-term variation were calculated and compared between techniques for short- and intermediate-term outcome. RESULTS: Average acceleration and deceleration capacities and short-term variation showed a progressive decrease in their diagnostic indices of fetal health from the first examination 5 days before delivery to 1 day before delivery. However, this decrease was significant 3 days before delivery for average acceleration and deceleration capacities, but 2 days before delivery for short-term variation. Compared with analysis of changes in short-term variation, analysis of (delta) average acceleration and deceleration capacities better predicted values of Apgar scores <7 and antenatal death (area under the curve for prediction of antenatal death: delta average acceleration capacity, 0.62 [confidence interval, 0.19ā€“1.0]; delta short-term variation, 0.54 [confidence interval, 0.13ā€“0.97]; P=.006; area under the curve for prediction Apgar <7: average deceleration capacity <24 hours before delivery, 0.64 [confidence interval, 0.52ā€“0.76]; short-term variation <24 hours before delivery, 0.53 [confidence interval, 0.40ā€“0.65]; P=.015). Neither phase-rectified signal averaging indices nor short-term variation showed predictive power for developmental disability at 2 years of age (Bayley developmental quotient, <95 or <85). CONCLUSIONS: The phase-rectified signal averaging method seems to be at least as good as short-term variation to monitor progressive deterioration of severely growth-restricted fetuses. Our findings suggest that for short-term outcomes such as Apgar score, phase-rectified signal averaging indices could be an even better test than short-term variation. Overall, our findings confirm the possible value of prospective trials based on phase-rectified signal averaging indices of autonomic nervous system of severely growth-restricted fetuses

    Bipedal steps in the development of rhythmic behavior in humans

    No full text
    We contrast two related hypotheses of the evolution of dance: H1: Maternal bipedal walking influenced the fetal experience of sound and associated movement patterns; H2: The human transition to bipedal gait produced more isochronous/predictable locomotion sound resulting in early music-like behavior associated with the acoustic advantages conferred by moving bipedally in pace. The cadence of walking is around 120 beats per minute, similar to the tempo of dance and music. Human walking displays long-term constancies. Dyads often subconsciously synchronize steps. The major amplitude component of the step is a distinctly produced beat. Human locomotion influences, and interacts with, emotions, and passive listening to music activates brain motor areas. Across dance-genres the footwork is most often performed in time to the musical beat. Brain development is largely shaped by early sensory experience, with hearing developed from week 18 of gestation. Newborns reacts to sounds, melodies, and rhythmic poems to which they have been exposed in utero. If the sound and vibrations produced by footfalls of a walking mother are transmitted to the fetus in coordination with the cadence of the motion, a connection between isochronous sound and rhythmical movement may be developed. Rhythmical sounds of the human mother locomotion differ substantially from that of nonhuman primates, while the maternal heartbeat heard is likely to have a similar isochronous character across primates, suggesting a relatively more influential role of footfall in the development of rhythmic/musical abilities in humans. Associations of gait, music, and dance are numerous. The apparent absence of musical and rhythmic abilities in nonhuman primates, which display little bipedal locomotion, corroborates that bipedal gait may be linked to the development of rhythmic abilities in humans. Bipedal stimuli in utero may primarily boost the ontogenetic development. The acoustical advantage hypothesis proposes a mechanism in the phylogenetic development
    • ā€¦
    corecore