203 research outputs found

    Kinetic Theory and Swarming Tools to Modeling Complex Systems—Symmetry problems in the Science of Living Systems

    Get PDF
    This MPDI book comprises a number of selected contributions to a Special Issue devoted to the modeling and simulation of living systems based on developments in kinetic mathematical tools. The focus is on a fascinating research field which cannot be tackled by the approach of the so-called hard sciences—specifically mathematics—without the invention of new methods in view of a new mathematical theory. The contents proposed by eight contributions witness the growing interest of scientists this field. The first contribution is an editorial paper which presents the motivations for studying the mathematics and physics of living systems within the framework an interdisciplinary approach, where mathematics and physics interact with specific fields of the class of systems object of modeling and simulations. The different contributions refer to economy, collective learning, cell motion, vehicular traffic, crowd dynamics, and social swarms. The key problem towards modeling consists in capturing the complexity features of living systems. All articles refer to large systems of interaction living entities and follow, towards modeling, a common rationale which consists firstly in representing the system by a probability distribution over the microscopic state of the said entities, secondly, in deriving a general mathematical structure deemed to provide the conceptual basis for the derivation of models and, finally, in implementing the said structure by models of interactions at the microscopic scale. Therefore, the modeling approach transfers the dynamics at the low scale to collective behaviors. Interactions are modeled by theoretical tools of stochastic game theory. Overall, the interested reader will find, in the contents, a forward look comprising various research perspectives and issues, followed by hints on to tackle these

    Differentiated cell behavior: a multiscale approach using measure theory

    Full text link
    This paper deals with the derivation of a collective model of cell populations out of an individual-based description of the underlying physical particle system. By looking at the spatial distribution of cells in terms of time-evolving measures, rather than at individual cell paths, we obtain an ensemble representation stemming from the phenomenological behavior of the single component cells. In particular, as a key advantage of our approach, the scale of representation of the system, i.e., microscopic/discrete vs. macroscopic/continuous, can be chosen a posteriori according only to the spatial structure given to the aforesaid measures. The paper focuses in particular on the use of different scales based on the specific functions performed by cells. A two-population hybrid system is considered, where cells with a specialized/differentiated phenotype are treated as a discrete population of point masses while unspecialized/undifferentiated cell aggregates are represented with a continuous approximation. Numerical simulations and analytical investigations emphasize the role of some biologically relevant parameters in determining the specific evolution of such a hybrid cell system.Comment: 25 pages, 6 figure

    Numerical Simulation of a Multiscale Cell Motility Model Based on the Kinetic Theory of Active Particles

    Get PDF
    In this work, we deal with a kinetic model of cell movement that takes into consideration the structure of the extracellular matrix, considering cell membrane reactions, haptotaxis, and chemotaxis, which plays a key role in a number of biological processes such as wound healing and tumor cell invasion. The modeling is performed at a microscopic scale, and then, a scaling limit is performed to derive the macroscopic model. We run some selected numerical experiments aimed at understanding cell movement and adhesion under certain documented situations, and we measure the alignment of the cells and compare it with the pathways determined by the extracellular matrix by introducing new alignment operators.D.K. is partially funded by Consejo Nacional de Investigaciones Científicas y Técnicas Project PIP 11220150100500 CO, Agencia Nacional de Promoción Científica y Tecnológica Project PICT 2015-1066, and Secretaría de Ciencia y Técnica (UNC). J.N. is partially supported by Junta de Andalucía Project P12-FQM-954 and MINECO Project RTI2018-098850-B-I00

    Pedestrian collision avoidance with a local dynamic goal

    Get PDF
    oai:www.collective-dynamics.eu:article/91We present here a general formalism for equipping simulated pedestrians with an avoidance mechanism. The central idea is to use a short-range target which is adjusted dynamically depending on the environment and thus modulating the desired velocity of the agent. This formulation can be implemented over any type of existing pedestrian model, being force-based or rule-based. As an example, we implement a simple instance of the formulation which is adjusted to reproduce previous reported and available experimental data of collision avoidance in scenarios of low density. The proposed minimal model shows good agreement with the real trajectories and other macroscopic observables

    A Measure-Theoretic Model for Collective Cell Migration and Aggregation

    Get PDF
    The aim of this paper is to present a measure-theoretic approach able to derive an Eulerian model of the dynamics of a cell population with a nite number of cells out of a microscopic Lagrangian description of the underlying cellular particle system. By looking at the spatial distribution of cells in terms of a time-evolving probability measure, rather than at individual cell paths, an ensemble representation of the cell colony is obtained, which can then result either in discrete, continuous, or hybrid approaches according to the spatial structure of such a probability measure. Remarkably, such an approach does not call for any assumption on the number of cells taken into account, thus providing consistency of the same modeling framework across all levels of representation. In addition, it is suitable to cope with the often ambiguous translation of microscopic arguments (i.e., cell dimensions and interaction radii) into macroscopic descriptions. The proposed approach, also extended to the case of multiple coexisting cell populations, is then tested with sample simulations that provide a useful sensitivity analysis of the model parameters

    Extension of tumor fingers: A comparison between an individual-cell based model and a measure theoretic approach

    Get PDF
    The invasive capability is fundamental in determining the malignancy of a solid tumor. In particular, tumor invasion fronts are characterized by different morphologies, which result both from cell-based processes (such as cell elasticity, adhesive properties and motility) and from subcellular molecular dynamics (such as growth factor internalization, ECM protein digestion and MMP secretion). Of particular relevance is the development of tumors with unstable fingered morphologies: they are in fact more aggressive and hard to be treated than smoother ones as, even if their invasive depth is limited, they are diffcult to be surgically removed. The phenomenon of malignant fingering has been reproduced with several mathematical approaches. In this respect, we here present a qualitative comparison between the results obtained by an individual cell-based model (an extended version of the cellular Potts model) and by a measure-based theoretic method. In particular, we show that in both cases a fundamental role in nger extension is played by intercellular adhesive forces and taxis-like migration

    Generation of navigation graphs for indoor space

    Get PDF
    This article proposes a comprehensive approach to computing a navigation graph for an indoor space. It focuses on a single floor, but the work is easily extensible to multi-level spaces. The approach proceeds by using a formal model, based on the combinatorial map but enhanced with geometric and semantic information. The process is almost fully automatic, taking as input the building plans providing the geometric structure of the floors and semantics of the building, such as functions of interior spaces, portals, etc. One of the novel aspects in this work was the use of combinatorial maps and their duals to provide a compact formal description of the topology and connectivity of the indoor structure represented by a connected, embedded graph. While making use of existing libraries for the more routine computational geometry involved, the research develops several new algorithms, including one for computing the local kernel of a region. The process is evaluated by means of a case study using part of a university building

    Design And Control Of An Autonomous Electrical Vehicle For Indoor Transport Applications

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2016Günümüzde, sensörlerin ve işlem gücü yüksek cihazların kolay üretilebilir ve ulaşılabilir olması sayesinde, mekatronik ile ilgili birçok alanda, insanların hayatını kolaylaştıracak araştırmalar hızlanmıştır. Sürücüsüz araçlar da bu alanların en çok ilgi görenlerindendir. Sürücüsüz hava araçları, askeri faaliyetler, hafif eşyaların taşınması, afetlerde alan keşifleri vb. konularda görev almaktadır. Sürücüsüz kara araçları ise, gelecekte hem askeri alanda kullanılabilecek, hem de sivil düşünüldüğünde, insan faktöründen kaynaklanan kazaları sıfıra indirebilecek ve gerek insan, gerek yük ve eşya taşınmasını, ulaşımı oldukça kolaylaştıracaktır. Sürücüsüz araçlar arasında en yaygın araştırmaları bulunan çeşit, karayollarında ilerleyebilecek, trafik içinde hareket edebilecek, uzun mesafede insan taşıyabilecek araçlardır. Bu araçların geliştirilmesinde genellikle standart otomobiller modifiye edilerek kullanılmakta, bu otomobillere çeşitli mekatronik sistemler ve sensörler entegre edilerek, sürücüsüz hareket edebilecek hale getirilmektedir. Bunun yanında, son birkaç yılda, alışveriş merkezleri, havaalanları gibi geniş alanları kullanan insan sayısının artması sebebiyle, bu alanlarda insanların gidecekleri yerleri rahat bulabilmesi için kolay ulaşılabilir sanal haritalar, rehber robotlar gibi ürünler ortaya çıkmıştır. Dolayısıyla, bu konuya yönelik olan iç mekanda insan taşıyan otonom araç ilgili çalışmalar da önem kazanmıştır. Bu tezde, havaalanları, alışveriş merkezleri gibi yayaların yoğun olarak bulunduğu iç mekanlarda kullanılabilecek bir otonom aracın tasarımı anlatılmaktadır. Araç iç mekanda çalışacağı için, zararlı gazlar açığa çıkaran ve gürültü kirliliğine yol açan benzinli araçlar yerine, elektrikli bir araç tercih edilmiştir. Manevra kabiliyetinin yüksek olmasına gerek duyulduğundan, boyutları küçük bir golf aracı tercih edilmiştir. Öncelikle golf aracı, sürücüsüz hareket edebilmesi için modifiye edilmiş, direksiyon ve fren pedalına daha önce yerleştirilen ve bunları fiziksel olarak hareket ettiren çeşitli mekanik aktüatörleri kontrol edecek sürücüler yerleştirilmiştir. Aracı hızlandırmak için ise aracın motor kontrolünü yapan ECU ünitesine analog gerilim olarak sinyal verilmesi gerekmektedir. Daha sonra, bu sürücülere ve ECU'ya referans sinyali gönderecek olan ana kontrolcü yerleştirilmiştir. Ana kontrolcü olarak, kullanım kolaylığı ve güvenilirliği açısından, otonom araçlar önde gelmek üzere birçok mekatronik araştırmada yaygın olarak kullanılan, dSpace MABX2 tercih edilmiştir. Simulink ile, MABX2'nin simulink için geliştirdiği RTI blokları kullanılarak bir tümleşik model hazırlanıp, cihaza gömülmektedir. Cihaz çalışırken bu simulink modelini sürekli olarak koşturmakta, modeldeki bloklarla ilişkili giriş ve çıkış pinlerinden, gerçek dünya ile sinyal alışverişi yapmaktadır. Bu simulink modeli üzerinden kapalı çevrim kontrolcüler oluşturulup, sensörlerden gelen geri besleme sinyalleri ile sürücülere gidecek olan referans sinyallerini taşıyan kablolar, cihaza uygun şekilde bağlanarak kontrol sağlanmaktadır. Ayrıca, ana kontrolcüye ek olarak, fren sistemi için güvenlik amaçlı bir kontrolcü daha yerleştirilmiştir. Bu kontrolcü için Arduino kart kullanılmış, ana kontrolcüden sinyal gelmediği zamanlarda frene basacak şekilde ayarlanmıştır. Bunun yanında bir de kablosuz alıcı bağlanmış, acil bir durumda, uzaktan kumandadan ilgili düğmeye basıldığında, ana kontrolcüden bağımsız olarak fren pedalına tamamen basılmasını sağlamaktadır. İnsansız sürüş için kullanılan direksiyon, fren ve gaz sistemlerindeki kontrolcüler için PID kontrolcüler tercih edilmiştir. Kontrolcü katsayılarının ayarlanması için aracın ön ve arka akslarının altlarına destekler konularak yer ile teması kesilmiş ve denemeler yapılmıştır. Daha sonra ana kontrolcüye RC sinyal alıcı bağlanarak, bu sistemlerin kararlılığını ve kontrolcülerin uygunluğunu test etme amacıyla, laboratuvar içinde ve koridorda RC kumanda ile sürüş denemesi yapılmıştır. Bu testlerde aracın hızlanma ve yavaşlama kararlılığı, manevra kabiliyeti ölçülmüştür. Kontrolcülerin kararlı olduğu görüldükten sonra otonom sürüş için sensör entegrasyonu çalışmalarına başlanmıştır. İç mekana yönelik geliştirilen otonom araçlarda, sorun teşkil eden en önemli konulardan biri, aracın mekan içindeki konumunun bulunmasıdır. Dış mekanda çalışan otonom araçlarla GPS sensörü ile cm hassasiyetinde konum bilgisi alınabilirken, iç mekanda çalışan araçlarda GPS sensörü uydu sinyali alamadığından, bu mümkün olmamaktadır. Bu sorunu çözmek için çeşitli çalışmalar yapılmış, görüntü işleme tabanlı, kablosuz sinyal tabanlı(IPS) vb. çeşitli yöntemler denenmiştir. Bunlardan en stabil ve isabetli olanı, mekana kablosuz sinyal verici cihazlar, araç üzerine bir alıcı cihaz yerleştirip, bu cihazlardan alınan sinyaller kullanılarak triangulasyon yöntemi ile konumun hesaplanmasıdır. Ancak böyle bir sistemin kurulması sinyal noktası sayısına bağlı olarak maliyetli olmakla birlikte, kablosuz sinyaller duvarlardan geçerken zayıfladığından her alan için en iyi seçim değildir. Bu çalışmada konum hesaplanması için temel sensör olarak enkoder kullanılmıştır. Enkoder'dan alınan hız verisi, direksiyon açısı verisinden elde edilen araç doğrultusu verisi ile birlikte kinematik denklemlerden geçirilmekte ve aracın konumu bu şekilde sürekli olarak hesaplanmaktadır. Tekerlek kayması sebebiyle meydana çıkan hatanın oranı, aracın düz zeminde ve düşük hızda ilerlemesinden kaynaklı olarak çok düşüktür. Yine de uzun mesafeler kat edildiğinde, kümülatif hatadan dolayı, gerçek konumla ölçülen konum arasında farklar oluşabilmektedir. Bu sorunun çözümü için ise gelecek çalışmalarda, mekanın çeşitli yerlerine yerleştirilmiş veya mekanın kendisinden önceden elde edilmiş özgün görüntüler referans alınıp, araç üzerine yerleştirilecek bir kamera sisteminden alınan görüntü ile karşılaştırılarak aracın konum ölçümünün düzeltilmesi hedeflenmektedir. Aracın yayaların yoğun bulunduğu ortamlarda çalışması, hareket eden veya edemeyen engellerin ayırt edilmesi, dar hareket alanı ve insan davranışı gibi faktörlerden kaynaklanan problemleri de beraberinde getirmektedir. Bu konuda daha önceden küçük robotlarla birçok araştırma yapılmış, insanların davranışlarını önceden tahmin edebilen ve insanlardan mümkün olduğunca uzak durmaya yönelik kontrolcü ve teknikler geliştirilmiştir. Bu çalışmada engellerin algılanması için, kendi gönderdiği gözle görülmeyen ışınların yüzeylerden yansıma sürelerini hesaplayan bir LIDAR sensör kullanılmıştır. Bu sensör gerek hava, gerek kara için üretilen sürücüsüz araçlarda yaygın olarak kullanılmakta, ışınların geri dönüş sürelerinden, ışığın değdiği yüzeyin uzaklığını hesaplayabilmektedir. Bunun yanında 4 katmanlı tarama yaparak, gördüğü ortamı 4 düzlem bazında üç boyutlu nokta bulutu şeklinde sunabilmektedir. Aynı zamanda içindeki algoritma sayesinde, baktığı ortamdaki objeleri de boyutlarıyla ayırt edebilmekte, hareket hızlarını ölçebilmektedir. Bu sayede yayaları diğer engellerden ayırabilmek, dolayısıyla hareket edebileceklerini önceden tahmin etmek ve hareketlerini ölçmek kolaylaşmaktadır. Bu sensörün üzerine 1 düzlem ve daha geniş tarama açısına sahip bir LIDAR daha eklenmiştir. Bu sensör 4 düzlem LIDAR kadar ayrıntılı veri vermese de, geniş tarama açısı kör noktalar için kullanıldığında, daha kararlı ve güvenli engelden kaçma davranışı sağlamaktadır. Otonom sürüş için, sensörlerden alınan verilerin işlenerek, belirli karar ve planlama mekanizmalarından geçirilmesi gerekmektedir. Bu çalışmada, haritası bilinen bir mekanda aracın çeşitli durak noktaları arasında hareket etmesi planlanmıştır. Bu hareket için rota planlaması, aracın başlangıç konumundan istenilen durak noktasına kadar sıralı hedef noktalar belirlenmesi ile yapılmaktadır. Aracın bu noktalardan belirli bir uzaklık töleransı ile geçmesi ve hedef noktalar bitene kadar, noktadan geçtikçe bir sonraki noktayı hedef alması ile, araç son hedef noktaya ulaştığında, istenilen durak noktasına ulaşacaktır. Söz konusu hedef noktalar arasında hareket için, önce sadece nokta takibine yönelik bir algoritma denenmiş, daha sonra hem nokta takibini, hem engelden kaçma kabiliyetini içerek potansiyel alan methodu kullanılmıştır. Kullanılan ilk algoritmada aracın hedef noktaya yönelmesinin kontrolü, aracın doğrultusunun ve hedef noktanın sabit x ekseni ile yaptığı açının karşılaştırılmasıyla yapılmaktadır. Bu karşılaştırmanın sonucu hata olarak alınmakta ve direksiyon bu hataya göre kontrol edilerek, minimum dönüş miktarı ile hedef noktaya yönelecek şekilde manevra yapılmaktadır. Bunun yanında, hedef noktaya yönelmeden önce, bu noktanın aracın dönebileceği en küçük dönüş yarıçaplı çemberin içinde olup olmadığı kontrol edilmektedir. Eğer nokta bu çemberin içindeyse, araç tam bir dönüş hareketi yapsa da noktaya ulaşamayacağından, önce aksi yönde manevra yaparak noktayı bu çemberin dışına çıkarmakta, daha sonra noktaya doğru yönelmeye çalışmaktadır. İkinci ve son algoritmada ise potansiyel alan methodundan yola çıkarak, engellerin uzaklıklarıyla orantılı olarak itme kuvveti ve hedef noktasına olan uzaklıkla orantılı olarak çekme kuvveti hesaplanıp, bu kuvvetler kullanılarak aracın yönelmesi gereken doğrultu belirlenmektedir. Araç bu şekilde engellerin arasından manevra yaparak geçebilmekte ve hedef noktasına ulaşabilmektedir. İç mekana yönelik geliştirilen otonom araçlarda karşılaşılan bir diğer problem de, ortamdaki yayalar sebebiyle meydana gelen kaza veya hedef noktaya zamanında ulaşamama durumlarıdır. Yayaların davranışlarının tahmin edilebilmesi için çeşitli çalışmalar yapılmaktadır. Geliştirilen robotlar bu davranışları öngörerek hareketli yayaların gideceği yolu tahmin edebilmekte ve yoldan çekilebilmekte, duran yayaların ise etrafından dolanabilmektedir. Ancak sadece davranışları öngörmek ve yayalardan uzak durmak bazı durumlarda yeterli olmamaktadır. Bir alışveriş merkezinde ilerleyen bir otonom aracın yolunun, yolda duran bir grup insan tarafından kesilmesi ve aracın geçebileceği bir yer bulamaması, bu yetersiz durumlara bir örnek olarak verilebilir. Bu ve benzer durumların en efektif çözümü, aracın insanlarla iletişim kurmasıdır. Çalışmanın ilerleyen aşamalarında planlanan düzenlemelerle, araca insanlarla iletişim kurabileceği donanımlar entegre edilmesi ve buna yönelik yeni davranışlar tanımlanması mümkündür. Önceki örnek üzerinden gidilirse, bu iletişim, aracın topluluktan geçme izni isteyerek, yayaların kenara çekilmesi ile kendisine bir yol açması olarak düşünülebilir. Bu çalışmada, yayaların bulunduğu bir iç mekanda çalışması planlanan bir otonom aracın tasarımının çeşitli aşamalarının üzerinde durulmuştur. İnsansız hareket için kullanılan mekatronik sistemler ve sensörler sunulmuş, kontrol için kullanılan donanım ve yazılım açıklanmıştır. Bunun yanında aracın otonom şekilde seyahat etmesi için kullanılan algoritmalar gösterilmiş, bu algoritmalar için gerekli verilerin ortamdan alınması için kullanılan sensörlerden bahsedilmiştir. Son olarak da gerçek dünyada yapılan sürüş testlerine değinilmiş ve sonuçlar irdelenmiştir.As the need of intelligent vehicles on our roadways emerges, there is an equally important need emerges as well: The need of intelligent vehicles on areas such as university campuses, airports or shopping malls. These intelligent vehicles can help elderly, disabled, or people with heavy luggage. This thesis describes an intelligent vehicle that can be used indoor areas where pedestrians exist. The vehicle is planned to carry luggages and transport humans. Vehicle used is an electric golf cart, considering the significant advantages of less noise, no toxic gas emission and higher maneuverability. Firstly, vehicle is modified for unmanned drive. Drivers are added to control actuators on steering wheel and brake pedal. Then, main controller, dSpace MABX2 is placed. This device runs a MATLAB simulink model embedded in itself. While running, this model communicates with real world through input and output pins on the device, which are related to RTI blocks placed inside simulink model. Controllers are constructed in this simulink model and actuators were ready to control by connecting this in/out pins to related elements with cable. Other than the main controller, a separate controller, an Arduino board is used for braking, for emergency purposes. If an emergency situation occurs, if brake signal is cut off from main controller or if button on the related RC transmitter is pressed, this controller applies full braking independent of the main controller. PID controllers are preferred for steering wheel, brake and throttle unmanned drive subsystems. Indoor positioning is one of the most important problems when it comes to autonomous vehicles.There are studies proposing several computer vision based, wireless signal based etc. methods. Most accurate method is (IPS) but it is costly to set up and because of wireless signals gets weaker while passing through walls, it is not the best solution for every indoor environment. In this study, an encoder is used as main sensor for calculating position. Error caused by tire slip is very small because of the flat surface and slow move speed of the vehicle. But because of the error being accumulative, on long distance travel, real position and calculated position differ slightly. A computer vision based method similar to landmarking could be implemented in future phases to correct this difference. Environment identification and decision making is necessary for autonomous drive. For detecting obstacles and pedestrians in front of the vehicle, a LIDAR sensor is used. 3d cloud data consisting of 4 plane, can be obtained from this sensor. With the 4 plane LIDAR sensor used, it is possible to separate pedestrians from static obstacles and measure their movement speed. A second 1 plane scanning LIDAR with wide scan angle added to detect objects falling out of the 4 plane LIDAR scan angle, for the purpose of achieving more stable and safer obstacle avoidance. Avoiding obstacles is first priority for the vehicle. Some path following algorithms had been experimented on. General path following logic is based on goal points. To travel between two destinations in a known map, vehicle is given a number of goal points in proper order. Vehicle follows this points using implemented path following algorithm until the last goal point is reached. Last goal point means vehicle arrived the destination. On first experimental path following algorithm, vehicle calculates error of heading between itself and the goal point and rotates towards goal point by selecting the shortest direction, using a control logic. Moreover, vehicle constantly checks if the goal point is in vehicle's minimum turning radius. If it is, vehicle will never be able to reach it while trying to rotate towards it. Instead, vehicle maneuvers to opposite direction until the point is out of the minimum turning radius. Then rotates towards it. Second and final experiment is potential field method. A method including both path following and obstacle avoidance behaviors. Calculating pushing forces proportional to distances from objects in front of the vehicle and pulling force proportional to distance from next goal point, vehicle is able to maneuver between obstacles and reach the point. In this thesis, various stages of design and production of an autonomous vehicle, which is planned to operate in indoor environment where pedestrians exists, is explained. Sensors and mechatronic systems used for unmanned drive were presented, hardware and software used for control are discussed. Moreover, algorithms used for the vehicle to travel autonomously and and sensors used for receiving environmental data are explained. Finally, the real world driving tests performed are shown and the results were discussed.Yüksek LisansM.Sc

    Mathematical models of cell migration and self-organization in embryogenesis

    Get PDF
    In this thesis we deal with mathematical models and numerical simulations for cell migration and self-organization in embryogenesis. The part of biology which studies the formation and development of the embryo from fertilization until birth is called embryology. Morphogenesis is then the part of embryology which is concerned with the development of patterns and forms. It is well known that although morphogenesis processes are controlled at the genetic scale, genes themselves cannot create the pattern. In general a series of biological mechanisms of self-organization intervene during the early development and the formation of particular biological structures can not be anticipated solely by genetic information. This needs to be taken into account in the choice of a suitable mathematical formulation of such phenomena. Two main main topics will be investigated: we will analyze and mathematically model the self-organizing cell migration in the morphogenesis of the lateral line in the zebrafish (Danio rerio); in a second part, starting from this model, we will propose, and will study both from the analytical and the numerical point of view, a mathematical model of collective motion under only alignment and chemotaxis effects. The present thesis is organized in four chapters. In Chapter 1 we will introduce biological elements about the morphogenetic process occurring in the development of the lateral line in a zebrafish. After a first discussion on the lateral line system and on its fundamental relevance in the current scientific research, we will focus on the main mechanisms of chemical signaling and collective cell migration that will be taken into account later in our mathematical formulation of the phenomenon. In Chapter 2 we will provide a mathematical-modelling background that, starting from the morphogenesis on the chemical scale, will gradually lead us to discuss the existing mathematical models, proposed in the last years to describe collective motion in living system and in particular in the biological field. Example of numerical simulations, and their comparison with experimental evidences will be briefly shown, taken from the recent modelling literature. In Chapter 3 we will introduce a mathematical model describing the self-organizing cell migration in the zebrafish lateral line primordium. We will discuss the derivation of the model, justifying our modelling choices and comparing them with the existing literature. The proposed model will adopt a hybrid “discrete in continuous” description, where cells are treated as discrete entities moving in a continuous space, and chemical signals at molecular level are described by continuous variables. On the chemical scale we will employ diffusion and chemotaxis equations, while on the cellular scale a Newtonian second order equation for each cell will take into account typical effects arising from collective dynamics models. Cell dimension will be recovered introducing suitable detection radii and nonlocal effects. Particular steady states, corresponding to emerging structures, said neuromasts, will then be investigated and their stability will be numerically assessed. Moreover, after a description of the designed numerical approximation scheme, some dynamical simulations will be proposed to show the powerful and the limit of our approach. Finally, we will discuss the estimate of the parameters of the model, derived in part by the biological and the modelling literature, in part by the stationary model or by a numerical data fitting. In Chapter 4 we will propose a Cucker and Smale-like mathematical model of collective motion. Our hybrid model will describe a system of interacting particles under an alignment and chemotaxis effect. From an analytical point of view local and global existence and uniqueness of the solution will be proved. Furthermore, the asymptotic behaviour of the model will be investigated on a linearized form of the system. From a numerical point of view, through an approximation scheme based on finite differences, the full nonlinear system will be simulated and some significant dynamical tests will be shown. Numerical results will be compared with those analytical, and new perspectives will be proposed

    斥力相互作用する自己駆動粒子系の集団動力学

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学准教授 伊藤 伸泰, 東京大学教授 西成 活裕, 東京大学教授 和泉 潔, 海洋研究開発機構上席技術研究員 浅野 俊幸, 産業技術総合研究所総括研究主幹 野田 五十樹University of Tokyo(東京大学
    corecore