1,185 research outputs found

    The Digital Microscope and Its Image Processing Utility

    Get PDF
    Many institutions, including high schools, own a large number of analog or ordinary microscopes. These microscopes are used to observe small objects. Unfortunately, object observations on the ordinary microscope require precision and visual acuity of the user. This paper discusses the development of a high-resolution digital microscope from an analog microscope, including the image processing utility, which allows the digital microscope users to capture, store and process the digital images of the object being observed. The proposed microscope is constructed from hardware components that can be easily found in Indonesia. The image processing software is capable of performing brightness adjustment, contrast enhancement, histogram equalization, scaling and cropping. The proposed digital microscope has a maximum magnification of 1600x, and image resolution can be varied from 320x240 pixels up to 2592x1944 pixels. The microscope was tested with various objects with a variety of magnification, and image processing was carried out on the image of the object. The results showed that the digital microscope and its image processing system were capable of enhancing the observed object and other operations in accordance with the user need. The digital microscope has eliminated the need for direct observation by human eye as with the traditional microscope

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    A Software Engineered Voice-Enabled Job Recruitment Portal System

    Get PDF
    The inability of job seekers to get timely job information regarding the status of the application submitted via conventional job portal system which is usually dependent on accessibility to the Internet has made so many job applicants to lose their placements. Worse still, the epileptic services offered by Internet Service Providers and the poor infrastructures in most developing countries have greatly hindered the expected benefits from Internet usage. These have led to cases of online vacancies notifications unattended to simply because a job seeker is neither aware nor has access to the Internet. With an increasing patronage of mobile phones, a self-service job vacancy notification with audio functionality or an automated job vacancy notification to all qualified job seekers through mobile phones will simply provide a solution to these challenges. In this paper, we present a Voice-enabled Job Recruitment Portal (JRP) System. The system is accessed through two interfaces – the voice user’s interface (VUI) and web interface. The VUI was developed using VoiceXML and the web interface using PHP, and both interfaces integrated with Apache and MySQL as the middleware and back-end component respectively. The JRP proposed in this paper takes the hassle of job hunting from job seekers, provides job status information in real-time to the job seeker and offers other benefits such as, cost, effectiveness, speed, accuracy, ease of documentation, convenience and better logistics to the employer in seeking the right candidate for a job

    A cost-effective, mobile platform-based, photogrammetric approach for continuous structural deformation monitoring

    Get PDF
    PhD ThesisWith the evolution of construction techniques and materials technology, the design of modern civil engineering infrastructure has become increasingly advanced and complex. In parallel to this, the development and application of appropriate and efficient monitoring technologies has become essential. Improvement in the performance of structural monitoring systems, reduction of labour and total implementation costs have therefore become important issues that scientists and engineers are committed to solving. In this research, a non-intrusive structural monitoring system was developed based on close-range photogrammetric principles. This research aimed to combine the merits of photogrammetry and latest mobile phone technology to propose a cost-effective, compact (portable) and precise solution for structural monitoring applications. By combining the use of low-cost imaging devices (two or more mobile phone handsets) with in-house control software, a monitoring project can be undertaken within a relatively low budget when compared to conventional methods. The system uses programmable smart phones (Google Android v.2.2 OS) to replace conventional in-situ photogrammetric imaging stations. The developed software suite is able to control multiple handsets to continuously capture high-quality, synchronized image sequences for short or long-term structural monitoring purposes. The operations are fully automatic and the system can be remotely controlled, exempting the operator from having to attend the site, and thus saving considerable labour expense in long-term monitoring tasks. In order to prevent the system from crashing during a long-term monitoring scheme, an automatic system state monitoring program and a system recovery module were developed to enhance the stability. In considering that the image resolution for current mobile phone cameras is relatively low (in comparison to contemporary digital SLR cameras), a target detection algorithm was developed for the mobile platform that, when combined with dedicated target patterns, was found to improve the quality of photogrammetric target measurement. Comparing the photogrammetric results with physical measurements, which were measured using a Zeiss P3 analytical plotter, the returned accuracy achieved was 1/67,000. The feasibility of the system has been proven through the implementation of an indoor simulation test and an outdoor experiment. In terms of using this system for actual structural monitoring applications, the optimal relative accuracy of distance measurement was determined to be approximately 1/28,000 under laboratory conditions, and the outdoor experiment returned a relative accuracy of approximately 1/16,400

    Electrical and Computer Engineering Annual Report 2016

    Get PDF
    Faculty Directory Faculty Highlights Faculty Fellow Program Multidisciplinary Research Fills Critical Needs Better, Faster Technology Metamaterials: Searching for the Perfect Lens The Nontraditional Power of Demand Dispatch Space, Solar Power\u27s Next Frontier Kit Cischke, Award-Winning Senior Lecturer Faculty Publications ECE Academy Class of 2016 Staff Profile: Michele Kamppinen For the Love of Teaching: Jenn Winikus Graduate Student Highlights Undergraduate Student Highlights External Advisory Committee Contracts and Grants Department Statistics AAES National Engineering Awardhttps://digitalcommons.mtu.edu/ece-annualreports/1002/thumbnail.jp

    MedLAN: Compact mobile computing system for wireless information access in emergency hospital wards

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As the need for faster, safer and more efficient healthcare delivery increases, medical consultants seek new ways of implementing a high quality telemedical system, using innovative technology. Until today, teleconsultation (the most common application of Telemedicine) was performed by transferring the patient from the Accidents and Emergency ward, to a specially equipped room, or by moving large and heavy machinery to the place where the patient resided. Both these solutions were unpractical, uneconomical and potentially dangerous. At the same time wireless networks became increasingly useful in point-of-care areas such as hospitals, because of their ease of use, low cost of installation and increased flexibility. This thesis presents an integrated system called MedLAN dedicated for use inside the A&E hospital wards. Its purpose is to wirelessly support high-quality live video, audio, high-resolution still images and networks support from anywhere there is WLAN coverage. It is capable of transmitting all of the above to a consultant residing either inside or outside the hospital, or even to an external place, thorough the use of the Internet. To implement that, it makes use of the existing IEEE 802.11b wireless technology. Initially, this thesis demonstrates that for specific scenarios (such as when using WLANs), DICOM specifications should be adjusted to accommodate for the reduced WLAN bandwidth. Near lossless compression has been used to send still images through the WLANs and the results have been evaluated by a number of consultants to decide whether they retain their diagnostic value. The thesis further suggests improvements on the existing 802.11b protocol. In particular, as the typical hospital environment suffers from heavy RF reflections, it suggests that an alternative method of modulation (OFDM) can be embedded in the 802.11b hardware to reduce the multipath effect, increase the throughput and thus the video quality sent by the MedLAN system. Finally, realising that the trust between a patient and a doctor is fundamental this thesis proposes a series of simple actions aiming at securing the MedLAN system. Additionally, a concrete security system is suggested, that encapsulates the existing WEP security protocol, over IPSec

    Spartan Daily, March 7, 2001

    Get PDF
    Volume 116, Issue 29https://scholarworks.sjsu.edu/spartandaily/9665/thumbnail.jp

    Spartan Daily, March 7, 2001

    Get PDF
    Volume 116, Issue 29https://scholarworks.sjsu.edu/spartandaily/9665/thumbnail.jp
    corecore