708 research outputs found

    Graphite immobilisation in glass composite materials

    Get PDF
    Irradiated graphite is a problematic nuclear waste stream and currently raises significant concern worldwide in identifying its long-term disposal route. This thesis describes the use of glass materials for the immobilisation of irradiated graphite prepared by microwave, conventional and sparks plasma sintering methods. Several potential glass compositions namely iron phosphate, aluminoborosilicate, calcium aluminosilicate, alkali borosilicate and obsidian were considered for the immobilisation of various loadings of graphite simulating irradiated graphite. The properties of the samples produced using different processing methods are compared selectively. An investigation of microwave processing using an iron phosphate glass composition revealed that full reaction of the raw materials and formation of a glass melt occurs with consequent removal of porosity at 8 minutes microwave processing. When graphite is present, iron phosphate crystalline phases are formed with much higher levels of residual porosity of up to 43 % than in the samples prepared using conventional sintering under argon. It is found that graphite reacts with the microwave field when in powder form but this reaction is minimised when the graphite is incorporated into a pellet, and that the graphite also impedes sintering of the glass. Mössbauer spectroscopy indicates that reduction of iron occurs with concomitant graphite oxidation. The production of graphite-glass samples using various powdered glass compositions by conventional sintering method still resulted in high porosity with an average of 6-17 % for graphite loadings of 20-25 wt%. Due to the use of pre-made glasses and controlled sintering parameters, the loss of graphite from the total mass is reduced compared to the microwaved samples; the average mass loss is < 0.8 %. The complication of iron oxidation and reduction is present in all the iron containing base glasses considered and this increases the total porosity of the graphite-glass samples. It is concluded that the presence of iron in the raw materials or base glasses as an encapsulation media for the immobilisation of the irradiated graphite waste is not advisable. The production of glass and graphite-glass samples based calcium aluminosilicate composition by spark plasma sintering method is found highly suitable for the immobilisation of irradiated graphite wastes. The advantages of the method includes short processing time i.e. < 40 minutes, improved sintering transport mechanisms, limited graphite oxidation, low porosity (1-4 %) and acceptable tensile strength (2-7 MPa). The most promising samples prepared using spark plasma sintering method were loaded with 30-50 wt% graphite

    System description document for the Anthrobot-2: A dexterous robot hand

    Get PDF
    The Anthrobot-2 is an anatomically correct, fully functioning robot hand. The number of fingers, the proportions of the links, the placement and motion of the thumb, and the shape of the palm follow those of the human hand. Each of the finger and thumb joints are servo-controlled. The Anthrobot-2 also includes a two-degree-of-freedom wrist. The entire package, including wrist, hand, and actuators, will mount on the ends of a variety of industrial manipulators. A patent has been applied for on the design. The Anthrobot-2 will be useful in tasks where dexterous manipulation or telemanipulation are required

    Grasping bulky objects with two anthropomorphic hands

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper presents an algorithm to compute precision grasps for bulky objects using two anthropomorphic hands. We use objects modeled as point clouds obtained from a sensor camera or from a CAD model. We then process the point clouds dividing them into two set of slices where we look for sets of triplets of points. Each triplet must accomplish some physical conditions based on the structure of the hands. Then, the triplets of points from each set of slices are evaluated to find a combination that satisfies the force closure condition (FC). Once one valid couple of triplets have been found the inverse kinematics of the system is computed in order to know if the corresponding points are reachable by the hands, if so, motion planning and a collision check are performed to asses if the final grasp configuration of the system is suitable. The paper inclu des some application examples of the proposed approachAccepted versio

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Sensors for Robotic Hands: A Survey of State of the Art

    Get PDF
    Recent decades have seen significant progress in the field of artificial hands. Most of the surveys, which try to capture the latest developments in this field, focused on actuation and control systems of these devices. In this paper, our goal is to provide a comprehensive survey of the sensors for artificial hands. In order to present the evolution of the field, we cover five year periods starting at the turn of the millennium. At each period, we present the robot hands with a focus on their sensor systems dividing them into categories, such as prosthetics, research devices, and industrial end-effectors.We also cover the sensors developed for robot hand usage in each era. Finally, the period between 2010 and 2015 introduces the reader to the state of the art and also hints to the future directions in the sensor development for artificial hands

    Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining

    Get PDF
    This study evaluates the machining performance of newly developed modified jatropha oils (MJO1, MJO3 and MJO5), both with and without hexagonal boron nitride (hBN) particles (ranging between 0.05 and 0.5 wt%) during turning of AISI 1045 using minimum quantity lubrication (MQL). The experimental results indicated that, viscosity improved with the increase in MJOs molar ratio and hBN concentration. Excellent tribological behaviours is found to correlated with a better machining performance were achieved by MJO5a with 0.05 wt%. The MJO5a sample showed the lowest values of cutting force, cutting temperature and surface roughness, with a prolonged tool life and less tool wear, qualifying itself to be a potential alternative to the synthetic ester, with regard to the environmental concern
    corecore