1,776 research outputs found

    Development of a predictive risk model for all-cause mortality in patients with diabetes in Hong Kong

    Get PDF
    Introduction Patients with diabetes mellitus are risk of premature death. In this study, we developed a machine learning-driven predictive risk model for all-cause mortality among patients with type 2 diabetes mellitus using multiparametric approach with data from different domains. Research design and methods This study used territory-wide data of patients with type 2 diabetes attending public hospitals or their associated ambulatory/outpatient facilities in Hong Kong between January 1, 2009 and December 31, 2009. The primary outcome is all-cause mortality. The association of risk variables and all-cause mortality was assessed using Cox proportional hazards models. Machine and deep learning approaches were used to improve overall survival prediction and were evaluated with fivefold cross validation method. Results A total of 273 678 patients (mean age: 65.4±12.7 years, male: 48.2%, median follow-up: 142 (IQR=106–142) months) were included, with 91 155 deaths occurring on follow-up (33.3%; annualized mortality rate: 3.4%/year; 2.7 million patient-years). Multivariate Cox regression found the following significant predictors of all-cause mortality: age, male gender, baseline comorbidities, anemia, mean values of neutrophil-to-lymphocyte ratio, high-density lipoprotein-cholesterol, total cholesterol, triglyceride, HbA1c and fasting blood glucose (FBG), measures of variability of both HbA1c and FBG. The above parameters were incorporated into a score-based predictive risk model that had a c-statistic of 0.73 (95% CI 0.66 to 0.77), which was improved to 0.86 (0.81 to 0.90) and 0.87 (0.84 to 0.91) using random survival forests and deep survival learning models, respectively. Conclusions A multiparametric model incorporating variables from different domains predicted all-cause mortality accurately in type 2 diabetes mellitus. The predictive and modeling capabilities of machine/deep learning survival analysis achieved more accurate predictions

    Supervised Learning Models for the Preliminary Detection of COVID-19 in Patients Using Demographic and Epidemiological Parameters

    Get PDF
    The World Health Organization labelled the new COVID-19 breakout a public health crisis of worldwide concern on 30 January 2020, and it was named the new global pandemic in March 2020. It has had catastrophic consequences on the world economy and well-being of people and has put a tremendous strain on already-scarce healthcare systems globally, particularly in underdeveloped countries. Over 11 billion vaccine doses have already been administered worldwide, and the benefits of these vaccinations will take some time to appear. Today, the only practical approach to diagnosing COVID-19 is through the RT-PCR and RAT tests, which have sometimes been known to give unreliable results. Timely diagnosis and implementation of precautionary measures will likely improve the survival outcome and decrease the fatality rates. In this study, we propose an innovative way to predict COVID-19 with the help of alternative non-clinical methods such as supervised machine learning models to identify the patients at risk based on their characteristic parameters and underlying comorbidities. Medical records of patients from Mexico admitted between 23 January 2020 and 26 March 2022, were chosen for this purpose. Among several supervised machine learning approaches tested, the XGBoost model achieved the best results with an accuracy of 92%. It is an easy, non-invasive, inexpensive, instant and accurate way of forecasting those at risk of contracting the virus. However, it is pretty early to deduce that this method can be used as an alternative in the clinical diagnosis of coronavirus cases

    A Powerful Paradigm for Cardiovascular Risk Stratification Using Multiclass, Multi-Label, and Ensemble-Based Machine Learning Paradigms: A Narrative Review

    Get PDF
    Background and Motivation: Cardiovascular disease (CVD) causes the highest mortality globally. With escalating healthcare costs, early non-invasive CVD risk assessment is vital. Conventional methods have shown poor performance compared to more recent and fast-evolving Artificial Intelligence (AI) methods. The proposed study reviews the three most recent paradigms for CVD risk assessment, namely multiclass, multi-label, and ensemble-based methods in (i) office-based and (ii) stress-test laboratories. Methods: A total of 265 CVD-based studies were selected using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) model. Due to its popularity and recent development, the study analyzed the above three paradigms using machine learning (ML) frameworks. We review comprehensively these three methods using attributes, such as architecture, applications, pro-and-cons, scientific validation, clinical evaluation, and AI risk-of-bias (RoB) in the CVD framework. These ML techniques were then extended under mobile and cloud-based infrastructure. Findings: Most popular biomarkers used were office-based, laboratory-based, image-based phenotypes, and medication usage. Surrogate carotid scanning for coronary artery risk prediction had shown promising results. Ground truth (GT) selection for AI-based training along with scientific and clinical validation is very important for CVD stratification to avoid RoB. It was observed that the most popular classification paradigm is multiclass followed by the ensemble, and multi-label. The use of deep learning techniques in CVD risk stratification is in a very early stage of development. Mobile and cloud-based AI technologies are more likely to be the future. Conclusions: AI-based methods for CVD risk assessment are most promising and successful. Choice of GT is most vital in AI-based models to prevent the RoB. The amalgamation of image-based strategies with conventional risk factors provides the highest stability when using the three CVD paradigms in non-cloud and cloud-based frameworks

    Common human diseases prediction using machine learning based on survey data

    Full text link
    In this era, the moment has arrived to move away from disease as the primary emphasis of medical treatment. Although impressive, the multiple techniques that have been developed to detect the diseases. In this time, there are some types of diseases COVID-19, normal flue, migraine, lung disease, heart disease, kidney disease, diabetics, stomach disease, gastric, bone disease, autism are the very common diseases. In this analysis, we analyze disease symptoms and have done disease predictions based on their symptoms. We studied a range of symptoms and took a survey from people in order to complete the task. Several classification algorithms have been employed to train the model. Furthermore, performance evaluation matrices are used to measure the model's performance. Finally, we discovered that the part classifier surpasses the others.Comment: 11 pages, 6 figures, accepted in Bulletin of Electrical Engineering and Informatics Journa

    DETEKSI DAN PREDIKSI PENYAKIT DIABETES MELITUS TIPE 2 MENGGUNAKAN MACHINE LEARNING (SCOOPING REVIEW)

    Get PDF
    Diabetes Mellitus is a chronic disease and one of the non-communicable diseases whose growth is very fast. This study aims to explore and analyze the early detection and prediction system of risk factors for type 2 diabetes mellitus which utilizes machine learning methods. This type of research is a scoping review to accumulate and synthesize the results of previous studies on the early detection of risk factors and the prediction system of Diabetes Mellitus type 2 using machine learning methods. The inclusion criteria are articles in English or Indonesian, journals published in the 2017-2021 range, full text, and not systematic reviews. Article searches are 4 databases, namely Google Scholar, Pubmed, International Journal of Public Health Science/Hindawi, and IEEE Xplore.  The results obtained as many as 2,941 articles, using the PRISMA method. The remaining 15 studies were maintained and met the criteria for qualitative analysis. The articles used machine learning methods in the creation of early detection models and prediction systems. Some articles use the merging of two methods (statistical and machine learning). The machine learning techniques mostly use supervised, unsupervised, and deep learning techniques. For the algorithms used, the majority of researchers used more than one algorithm such as algorithm support vector machine (SVM), random forest (RF), Decision Tree (DT), LASSO, and others, to compare the best accuracy of each algorithm. Risk factors associated with Diabetes Mellitus type 2 incidence are age, gender, obesity, family history of the disease, lack of physical activity, genetics, environment, smoking, blood pressure, and diet

    An ensemble multi-model technique for predicting chronic kidney disease

    Get PDF
    Chronic Kidney Disease (CKD) is a type of lifelong kidney disease that leads to the gradual loss of kidney function over time; the main function of the kidney is to filter the wastein the human body. When the kidney malfunctions, the wastes accumulate in our body leading to complete failure. Machine learning algorithms can be used in prediction of the kidney disease at early stages by analyzing the symptoms. The aim of this paper is to propose an ensemble learning technique for predicting Chronic Kidney Disease (CKD). We propose a new hybrid classifier called as ABC4.5, which is ensemble learning for predicting Chronic Kidney Disease (CKD). The proposed hybrid classifier is compared with the machine learning classifiers such as Support Vector Machine (SVM), Decision Tree (DT), C4.5, Particle Swarm Optimized Multi Layer Perceptron (PSO-MLP). The proposed classifier accurately predicts the occurrences of kidney disease by analysis various medical factors. The work comprises of two stages, the first stage consists of obtaining weak decision tree classifiers from C4.5 and in the second stage, the weak classifiers are added to the weighted sum to represent the final output for improved performance of the classifier
    • …
    corecore