1,054 research outputs found

    Predicting the risk of cancer in adults using supervised machine learning: a scoping review

    Get PDF
    OBJECTIVES: The purpose of this scoping review is to: (1) identify existing supervised machine learning (ML) approaches on the prediction of cancer in asymptomatic adults; (2) to compare the performance of ML models with each other and (3) to identify potential gaps in research. DESIGN: Scoping review using the population, concept and context approach. SEARCH STRATEGY: PubMed search engine was used from inception to 10 November 2020 to identify literature meeting following inclusion criteria: (1) a general adult (≥18 years) population, either sex, asymptomatic (population); (2) any study using ML techniques to derive predictive models for future cancer risk using clinical and/or demographic and/or basic laboratory data (concept) and (3) original research articles conducted in all settings in any region of the world (context). RESULTS: The search returned 627 unique articles, of which 580 articles were excluded because they did not meet the inclusion criteria, were duplicates or were related to benign neoplasm. Full-text reviews were conducted for 47 articles and a final set of 10 articles were included in this scoping review. These 10 very heterogeneous studies used ML to predict future cancer risk in asymptomatic individuals. All studies reported area under the receiver operating characteristics curve (AUC) values as metrics of model performance, but no study reported measures of model calibration. CONCLUSIONS: Research gaps that must be addressed in order to deliver validated ML-based models to assist clinical decision-making include: (1) establishing model generalisability through validation in independent cohorts, including those from low-income and middle-income countries; (2) establishing models for all cancer types; (3) thorough comparisons of ML models with best available clinical tools to ensure transparency of their potential clinical utility; (4) reporting of model calibration performance and (5) comparisons of different methods on the same cohort to reveal important information about model generalisability and performance

    The Quality Application of Deep Learning in Clinical Outcome Predictions Using Electronic Health Record Data: A Systematic Review

    Get PDF
    Introduction: Electronic Health Record (EHR) is a significant source of medical data that can be used to develop predictive modelling with therapeutically useful outcomes. Predictive modelling using EHR data has been increasingly utilized in healthcare, achieving outstanding performance and improving healthcare outcomes. Objectives: The main goal of this review study is to examine different deep learning approaches and techniques used to EHR data processing. Methods: To find possibly pertinent articles that have used deep learning on EHR data, the PubMed database was searched. Using EHR data, we assessed and summarized deep learning performance in a number of clinical applications that focus on making specific predictions about clinical outcomes, and we compared the outcomes with those of conventional machine learning models. Results: For this study, a total of 57 papers were chosen. There have been five identified clinical outcome predictions: illness (n=33), intervention (n=6), mortality (n=5), Hospital readmission (n=7), and duration of stay (n=1). The majority of research (39 out of 57) used structured EHR data. RNNs were used as deep learning models the most frequently (LSTM: 17 studies, GRU: 6 research). The analysis shows that deep learning models have excelled when applied to a variety of clinical outcome predictions. While deep learning's application to EHR data has advanced rapidly, it's crucial that these models remain reliable, offering critical insights to assist clinicians in making informed decision. Conclusions: The findings demonstrate that deep learning can outperform classic machine learning techniques since it has the advantage of utilizing extensive and sophisticated datasets, such as longitudinal data seen in EHR. We think that deep learning will keep expanding because it has been quite successful in enhancing healthcare outcomes utilizing EHR data

    Characterizing personalized effects of family information on disease risk using graph representation learning

    Full text link
    Family history is considered a risk factor for many diseases because it implicitly captures shared genetic, environmental and lifestyle factors. A nationwide electronic health record (EHR) system spanning multiple generations presents new opportunities for studying a connected network of medical histories for entire families. In this work we present a graph-based deep learning approach for learning explainable, supervised representations of how each family member's longitudinal medical history influences a patient's disease risk. We demonstrate that this approach is beneficial for predicting 10-year disease onset for 5 complex disease phenotypes, compared to clinically-inspired and deep learning baselines for a nationwide EHR system comprising 7 million individuals with up to third-degree relatives. Through the use of graph explainability techniques, we illustrate that a graph-based approach enables more personalized modeling of family information and disease risk by identifying important relatives and features for prediction

    Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review

    Get PDF
    Novel approaches that complement and go beyond evidence-based medicine are required in the domain of chronic diseases, given the growing incidence of such conditions on the worldwide population. A promising avenue is the secondary use of electronic health records (EHRs), where patient data are analyzed to conduct clinical and translational research. Methods based on machine learning to process EHRs are resulting in improved understanding of patient clinical trajectories and chronic disease risk prediction, creating a unique opportunity to derive previously unknown clinical insights. However, a wealth of clinical histories remains locked behind clinical narratives in free-form text. Consequently, unlocking the full potential of EHR data is contingent on the development of natural language processing (NLP) methods to automatically transform clinical text into structured clinical data that can guide clinical decisions and potentially delay or prevent disease onset

    Artificial Intelligence Techniques That May Be Applied to Primary Care Data to Facilitate Earlier Diagnosis of Cancer : Systematic Review

    Get PDF
    Acknowledgments This research was funded by the National Institute for Health Research (NIHR) Policy Research Programme, conducted through the Policy Research Unit in Cancer Awareness, Screening, and Early Diagnosis, PR-PRU-1217-21601. The views expressed are those of the authors and not necessarily those of the NIHR or the Department of Health and Social Care. This work was also supported by the CanTest Collaborative (funded by Cancer Research UK C8640/A23385), of which FW and WH are directors and JE, HS, and NdW are associate directors. HS is additionally supported by the Houston Veterans Administration Health Services Research and Development Center for Innovations in Quality, Effectiveness, and Safety (CIN13-413) and the Agency for Healthcare Research and Quality (R01HS27363). The funding sources had no role in the study design, data collection, data analysis, data interpretation, writing of the report, or the decision to submit for publication. The authors would like to thank Isla Kuhn, Reader Services Librarian, University of Cambridge Medical Library, for her help in developing the search strategy.Peer reviewedPublisher PD

    Artificial Intelligence Techniques That May Be Applied to Primary Care Data to Facilitate Earlier Diagnosis of Cancer: Systematic Review.

    Get PDF
    BACKGROUND: More than 17 million people worldwide, including 360,000 people in the United Kingdom, were diagnosed with cancer in 2018. Cancer prognosis and disease burden are highly dependent on the disease stage at diagnosis. Most people diagnosed with cancer first present in primary care settings, where improved assessment of the (often vague) presenting symptoms of cancer could lead to earlier detection and improved outcomes for patients. There is accumulating evidence that artificial intelligence (AI) can assist clinicians in making better clinical decisions in some areas of health care. OBJECTIVE: This study aimed to systematically review AI techniques that may facilitate earlier diagnosis of cancer and could be applied to primary care electronic health record (EHR) data. The quality of the evidence, the phase of development the AI techniques have reached, the gaps that exist in the evidence, and the potential for use in primary care were evaluated. METHODS: We searched MEDLINE, Embase, SCOPUS, and Web of Science databases from January 01, 2000, to June 11, 2019, and included all studies providing evidence for the accuracy or effectiveness of applying AI techniques for the early detection of cancer, which may be applicable to primary care EHRs. We included all study designs in all settings and languages. These searches were extended through a scoping review of AI-based commercial technologies. The main outcomes assessed were measures of diagnostic accuracy for cancer. RESULTS: We identified 10,456 studies; 16 studies met the inclusion criteria, representing the data of 3,862,910 patients. A total of 13 studies described the initial development and testing of AI algorithms, and 3 studies described the validation of an AI algorithm in independent data sets. One study was based on prospectively collected data; only 3 studies were based on primary care data. We found no data on implementation barriers or cost-effectiveness. Risk of bias assessment highlighted a wide range of study quality. The additional scoping review of commercial AI technologies identified 21 technologies, only 1 meeting our inclusion criteria. Meta-analysis was not undertaken because of the heterogeneity of AI modalities, data set characteristics, and outcome measures. CONCLUSIONS: AI techniques have been applied to EHR-type data to facilitate early diagnosis of cancer, but their use in primary care settings is still at an early stage of maturity. Further evidence is needed on their performance using primary care data, implementation barriers, and cost-effectiveness before widespread adoption into routine primary care clinical practice can be recommended.CRU
    corecore