2,529 research outputs found

    System integration for a novel positioning system using a model based control approach

    Get PDF
    This dissertation presents a model-based approach to perform system integration of a novel positioning sensing method, termed \u27Direct Position Sensing.\u27 Direct Position Sensing can actively monitor the planar position changes of motion control devices without the dependency of the conventional position sensor combined with kinematic model to estimate the planar position. Instead, Direct Position Sensing uses the technology of computer vision and digital display to directly monitor the planar position displacement of a motion control device by actively tracking the desired position of the device based on the displayed target showed on the digital screen. The integration of the computer vision as the feedback system to the motion controller, introduces intermittency and latency in the controller\u27s feedback loop. In order to integrate the slower computer vision sensor to the motion controller, a model-based controller architecture, Smith Predictor approach was first implemented to the Direct Position Sensing system. The Smith Predictor uses a mathematical plant model that is running in parallel with the actual plant so that the model predicts the plant output when the actual output of the system is unavailable. Due to the intermittency feedback of the system, a path prediction algorithm was developed to minimize the model residual during the intermittent feedback so that the tracking performance of the system can be improved. Furthermore, a model input corrector was also developed to correct the control action to the plant model based on the model residual to enhance the path prediction. Simulations and hardware experiments results show that the model-based strategy provides improved tracking performance of the system when latency and intermittency exist in the controller feedback loop

    Multi-agent framework based on smart sensors/actuators for machine tools control and monitoring

    Get PDF
    Throughout the history, the evolutions of the requirements for manufacturing equipments have depended on the changes in the customers' demands. Among the present trends in the requirements for new manufacturing equipments, there are more flexible and more reactive machines. In order to satisfy those requirements, this paper proposes a control and monitoring framework for machine tools based on smart sensor, on smart actuator and on agent concepts. The proposed control and monitoring framework achieves machine monitoring, process monitoring and adapting functions that are not usually provided by machine tool control systems. The proposed control and monitoring framework has been evaluated by the means of a simulated operative part of a machine tool. The communication between the agents is achieved thanks to an Ethernet network and CORBA protocol. The experiments (with and without cooperation between agents for accommodating) give encouraging results for implementing the proposed control framework to operational machines. Also, the cooperation between the agents of control and monitoring framework contributes to the improvement of reactivity by adapting cutting parameters to the machine and process states and to increase productivity

    Smart machining system platform for CNC milling with the integration of a power sensor and cutting model

    Get PDF
    Novel techniques and strategies are investigated for dynamically measuring the process capability of machine tools and using this information for Smart Machine System (SMS) research. Several aspects of the system are explored including system integration, data acquisition, force and power model calibration, feedrate scheduling and tool condition monitoring. A key aspect of a SMS is its ability to provide synchronization between process measurements and model estimates. It permits real time feedback regarding the current machine tool process. This information can be used to accurately determine and keep track of model coefficients for the actual tooling and materials in use, providing both a continued improvement in model accuracy as well as a way to monitor the health of the machine and the machining process. A cutting power model is applied based on a linear tangential force model with edge effect. The robustness of the model is verified through experiments with a wide variety of cutting conditions. Results show good agreement between measured and estimated power. A test platform has been implemented for performing research on Smart Machine Systems. It uses a commercially available OAC from MDSI, geometric modeling software from Predator along with a number of modules developed at UNH. Test cases illustrate how models and sensors can be combined to select machining conditions that will produce a good part on the first try. On-line calibration allows the SMS to fine tune model coefficients, which can then be used to improve production efficiency as the machine learns its own capabilities. With force measurements, the force model can be calibrated and resultant force predictions can be performed. A feedrate selection planner has been created to choose the fastest possible feedrates subject to constraints which are related to part quality, tool health and machine tool capabilities. Monitoring tangential model coefficients is shown to be more useful than monitoring power ratio for tool condition monitoring. As the model coefficients are independent of the cutting geometry, their changes are more promising, in that KTC will increase with edge chipping and breakage, while KTE will increase as the flank wearland expands

    A holistic integrated dynamic design and modelling approach applied to the development of ultraprecision micro-milling machines

    Get PDF
    Ultraprecision machines with small footprints or micro-machines are highly desirable for micro-manufacturing high-precision micro-mechanical components. However, the development of the machines is still at the nascent stage by working on an individual machine basis and hence lacks generic scientific approach and design guidelines. Using computer models to predict the dynamic performance of ultraprecision machine tools can help manufacturers substantially reduce the lead time and cost of developing new machines. Furthermore, the machine dynamic performance depends not only upon the mechanical structure and components but also the control system and electronic drives. This paper proposed a holistic integrated dynamic design and modelling approach, which supports analysis and optimization of the overall machine dynamic performance at the early design stage. Based on the proposed approach the modelling and simulation process on a novel 5-axis bench-top ultraprecision micro-milling machine tool – UltraMill – is presented. The modelling and simulation cover the dynamics of the machine structure, moving components, control system and the machining process, and are used to predict the overall machine performance of two typical configurations. Preliminary machining trials have been carried out and provided the evidence of the approach being helpful to assure the machine performing right at the first setup

    Distributed machining control and monitoring using smart sensors/actuators

    Get PDF
    The study of smart sensors and actuators led, during the past few years, to the development of facilities which improve traditional sensors and actuators in a necessary way to automate production systems. In an other context, many studies are carried out aiming at defining a decisional structure for production activity control and the increasing need of reactivity leads to the autonomization of decisional levels close to the operational system. We suggest in this paper to study the natural convergence between these two approaches and we propose an integration architecture dealing with machine tool and machining control that enables the exploitation of distributed smart sensors and actuators in the decisional system

    Simulation of Cutting Process – Modeling and Applications

    Get PDF

    Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 2: Integrated dynamic modelling, design optimisation and analysis

    Get PDF
    Using computer models to predict the dynamic performance of ultra-precision machine tools can help manufacturers to substantially reduce the lead time and cost of developing new machines. However, the use of electronic drives on such machines is becoming widespread, the machine dynamic performance depending not only on the mechanical structure and components but also on the control system and electronic drives. Bench-top ultra-precision machine tools are highly desirable for the micro-manufacturing of high-accuracy micro-mechanical components. However, the development is still at the nascent stage and hence lacks standardised guidelines. Part 2 of this two-part paper proposes an integrated approach, which permits analysis and optimisation of the entire machine dynamic performance at the early design stage. Based on the proposed approach, the modelling and simulation process of a novel five-axis bench-top ultra-precision micro-milling machine tool—UltraMill—is presented. The modelling and simulation cover the dynamics of the machine structure, the moving components, the control system and the machining process and are used to predict the entire machine performance of two typical configurations

    Chatter Simulation and Detection in CNC Milling

    Get PDF
    A key feature to maintaining a safe and efficient machining operation is the avoidance of unstable vibrations of the cutting tool, commonly called chatter. This thesis explores chatter simulation and a new chatter detection algorithm developed for use in a CNC milling machine. This algorithm, based on a once per revolution sampling method, samples forces experienced during the milling process, and calculates the variance of the differences between consecutive samples. As a selected level of variance, chatter is assumed. An existing milling simulation program is modified to produce a stability lobe diagram for a given CNC machine, workpiece material, and cutting tool. Stable, unstable, and marginally stable cuts are indicated as a function of spindle speed and axial depth of cut. The chatter detection algorithm is initially verified by simulation and then added to the simulation to auto-generate stability lobe diagrams. A collection of experimental aluminum cuts is run to collect force data that can be analyzed by the detection algorithm and compared to simulation results. Experimental cut stability is determined by observation of the noise, force, and cut surface. Comparing algorithm results to observed results shows the effectiveness of the algorithm in distinguishing between stable and unstable cuts. However, further testing is needed, particularly in determining the variance threshold of the algorithm. The simulation and algorithm are also used to explore the effect of system parameters; specifically, spring constant (k) and damping ratio (ζ). This exploration shows there being a strong connection between the maximum attainable stable axial depth and the parameters
    • …
    corecore