4 research outputs found

    Fixtureless automated incremental sheet metal forming

    Get PDF
    Die-based forming is a technology used by many industries to form metal panels. However, this method of forming lacks flexibility and cost effectiveness. In such cases, manual panel beating is typically undertaken for incremental forming of metal panels. Manual panel forming is a highly skilled operation with very little documentation and is disappearing due to non-observance and a lack of interest. Confederation of British Metal forming (CBM) and Institution of Sheet Metal Engineering (ISME) have realised the need for capturing and understanding manual skills used by panel beaters to preserve the knowledge. At the same time, industries seek for alternative panel forming solutions to produce high quality and cost-effective parts at low volume and reduce the repetitive, yet adaptive parts of the panel forming process to free up skilled workers to concentrate on the forming activities that are more difficult to automate. Incremental forming technologies, currently in practice, lack adaptability as they require substantial fixtures and dedicated tools. In this research a new proof-of-concept fixtureless automated sheet metal forming approach was developed on the basis of human skills captured from panel beaters. The proposed novel approach, named Mechatroforming®, consists of integrated mechanisms to form simple sheet metal parts by manipulating the workpiece using a robotic arm under a repetitive hammering tool. Predictive motion planning based on FEA was analysed and the manual forming skills were captured using a motion capture system. This facilitated the coordinated hammering and motion of the part to produce the intended shape accurately. A 3D measurement system with a vertical resolution of 50μm was also deployed to monitor the formation of the parts and make corrections to the forming path if needed. Therefore, the developed mechatronic system is highly adjustable by robotic motion and was closed loop via the 3D measurement system. The developed automated system has been tested rigorously, initially for bowl shape parts to prove the principle. The developed system which is 98% repeatable for depth and diameter, is able to produce targeted bowl shape parts with ±1% dimensional accuracy, high surface quality, and uniform material thickness of 0.95mm when tested with aluminium. It is envisaged that by further research, the proposed approach can be extended to form irregular and more complicated shapes that are highly in demand in various industries

    An automated solution for fixtureless sheet metal forming

    Get PDF
    Manual forming of sheet metal parts through traditional panel beating is a highly skilled profession used in many industries, particularly for sample manufacturing or repair and maintenance. However, this skill is becoming gradually isolated mainly due to the high cost and lack of expertise. Nonetheless, a cost-effective and flexible approach to forming sheet metal parts could significantly assist various industries by providing a method for fast prototyping sheet metal parts. The development of a new fixtureless sheet metal forming approach is discussed in this article. The proposed approach, named Mechatroforming®, consists of integrated mechanisms to manipulate sheet metal parts by a robotic arm under a controlled hammering tool. The method includes mechatronics-based monitoring and control systems for (near) real-time prediction and control of incremental deformations of parts. This article includes description of the proposed approach, the theoretical and modelling backgrounds used to predict the forming, skills learned from manual operations, and proposed automation system being built
    corecore