279 research outputs found

    Drones and Sensors Ecosystem to Maximise the “Storm Effects” in Case of CBRNe Dispersion in Large Geographic Areas

    Get PDF
    The advancements in the field of robotics, specifically in the aerial robotics, combined with technological improvements of the capability of drones, have increased dramatically the use of these devices as a valuable tool in a wide range of applications. From civil to commercial and military area, the requirements in the emerging application for monitoring complex scenarios that are potentially dangerous for operators give rise to the need of a more powerful and sophisticated approach. This work aims at proposing the use of swarm drones to increase plume detection, tracking and source declaration for chemical releases. The several advantages which this technology may lead to this research and application fields are investigated, as well as the research and technological activities to be performed to make swarm drones efficient, reliable, and accurate

    Drones and sensors ecosystem to maximise the "storm effects" in case of cbrne dispersion in large geographic areas

    Get PDF

    Experimental investigations on the aerodynamic and aeroacoustic characteristics of small UAS propellers

    Get PDF
    Unmanned aerial system (UAS) is a hot topic in both industry and academia fields. As a popular planform, the rotary-wing system gains more attentions. The small UAS propeller is the most important component in this system, which transfers electric energy into kinetic energy to accomplish fly missions. In the present work, several experimental studies have been performed to investigate the aerodynamic and aeroacoustic characteristics of small UAS propellers. First of all, by conducting force and flow filed measurements, the unsteady dynamic thrust and the wake structure of the propeller has been studied to explore the fundamental physics to help researchers and engineers to obtain a better understanding. Secondly, two kinds of bio-inspired the propellers have been designed and manufactured. Through a set of force, sound, and flow filed measurements, the aerodynamic and aeroacoustic performance of these propellers has been compared to the baseline propeller to evaluate the effects of aerodynamic efficiency and noise attenuation. It was found that the serrated trailing edge propeller could reduce the turbulent trailing edge noise up to 2 dB, and the maple seed inspired propeller could reduce the noise up to 4 dB with no effect on the aerodynamic performance. In addition, since the rotary-wing system consists more than one propeller, the rotor to rotor interaction on the aerodynamic and aeroacoustic performance also has been studied. By enlarging the separation distance between two propellers, the thrust fluctuation and noise generation could be restricted. Not only the design of the device itself has effect on the flying performance, the extreme weather also would affect it. Therefore, an icing research study on the small UAS propeller has been conducted to illustrate how does the ice formed on the propeller and how does the icing influence the aerodynamics performance and power consumption. During these experimental studies, the force measurements were achieved by a high sensitive force and moment transducer (JR3 load cell), which had a precision of ĂƒĂ‚Â±0.1N (ĂƒĂ‚Â± 0.25% of the full range). The sound measurements were conducted inside of the anechoic chamber located in the aerospace engineering department at Iowa State University. This chamber has a physical dimensions of 12ÃÂ12ÃÂ9 feet with a cut-off frequency of 100 Hz. The detailed flow structure downstream of the propeller was measured by a high-resolution digital PIV system. The PIV system was used to elucidate the streamwise flow structure downstream of the propeller. Both “free-run” and “phase-locked” PIV measurements were conducted to achieve the ensemble-average flow structure and detailed flow structure at certain phase angles

    Noise And Propulsive Efficiency Interactions For Rotors And Propellers At Constant Thrust

    Get PDF
    In the emerging market of Advanced Air Mobility (AAM), aerospace companies have been designing and prototyping electric and hybrid vehicles to revolutionize travel. These vehicles must have low noise and particulate emissions while also having enough propulsive efficiency to complete the mission. This thesis aims to study the relationship between noise and propulsive efficiency as related to any aircraft equipped with an electric motor and a variable pitch rotor/propeller. The combination of the electric motor with the variable pitch propeller/rotor allows for a decoupled rotational speed and torque generation, meaning that the electric motor can generate the same amount of torque while operating at different rotational speeds. This feature allows the rotor/propeller to hold constant thrust at different combinations of rotational speeds and torque, by adjusting the collective pitch of the blades. This research will show that, for a rotor at constant thrust, the minimum noise (from loading and thickness contributions) and minimum power operating points in terms of rotor RPM and collective blade pitch, are not the same thus leading to the fact that it takes increased energy to decrease noise. A MATLAB code is developed to investigate the power and noise relationship by employing several functions to integrate XFOIL and Blade Element Momentum Theory for the rotor performance calculations and WOPWOP for thickness and loading noise analysis. Broadband noise is not included in the analysis herein. In addition, this thesis will present the design and build of a rotor test stand used to test rotors to validate the simulation results and provide hardware-based solutions for the power required by a rotor in hover. Based on the experimental and simulation results, a closed form equation is also proposed that shows the power required for a rotor at constant thrust, and it can be included in a preliminary rotor performance analysis for AAM vehicle design

    Proceedings of the International Micro Air Vehicles Conference and Flight Competition 2017 (IMAV 2017)

    Get PDF
    The IMAV 2017 conference has been held at ISAE-SUPAERO, Toulouse, France from Sept. 18 to Sept. 21, 2017. More than 250 participants coming from 30 different countries worldwide have presented their latest research activities in the field of drones. 38 papers have been presented during the conference including various topics such as Aerodynamics, Aeroacoustics, Propulsion, Autopilots, Sensors, Communication systems, Mission planning techniques, Artificial Intelligence, Human-machine cooperation as applied to drones

    MRS Drone: A Modular Platform for Real-World Deployment of Aerial Multi-Robot Systems

    Full text link
    This paper presents a modular autonomous Unmanned Aerial Vehicle (UAV) platform called the Multi-robot Systems (MRS) Drone that can be used in a large range of indoor and outdoor applications. The MRS Drone features unique modularity with respect to changes in actuators, frames, and sensory configuration. As the name suggests, the platform is specially tailored for deployment within a MRS group. The MRS Drone contributes to the state-of-the-art of UAV platforms by allowing smooth real-world deployment of multiple aerial robots, as well as by outperforming other platforms with its modularity. For real-world multi-robot deployment in various applications, the platform is easy to both assemble and modify. Moreover, it is accompanied by a realistic simulator to enable safe pre-flight testing and a smooth transition to complex real-world experiments. In this manuscript, we present mechanical and electrical designs, software architecture, and technical specifications to build a fully autonomous multi UAV system. Finally, we demonstrate the full capabilities and the unique modularity of the MRS Drone in various real-world applications that required a diverse range of platform configurations.Comment: 49 pages, 39 figures, accepted for publication to the Journal of Intelligent & Robotic System

    Blade-Tip Vortex Noise Mitigation Traded-Off against Aerodynamic Design for Propellers of Future Electric Aircraft

    Get PDF
    We study noise generation at the blade tips of propellers designed for future electric aircraft propulsion and, furthermore, analyze the interrelationship between noise mitigation and aerodynamics improvement in terms of propeller geometric designs. Classical propellers with three or six blades and a conceptual propeller with three joined dual-blades are compared to understand the effects of blade tip vortices on the noise generation and aerodynamics. The dual blade of the conceptual propeller is constructed by joining the tips of two sub-blades. These propellers are designed to operate under the same freestream flow conditions and similar electric power consumption. The Improved Delayed Detached Eddy Simulation (IDDES) is adopted for the flow simulation to identify high-resolution time-dependent noise sources around the blade tips. The acoustic computations use a time-domain method based on the convective Ffowcs Williams–Hawkings (FW-H) equation. The thrust of the 3-blade conceptual propeller is\ua04%\ua0larger than the 3-blade classical propeller and\ua08%\ua0more than the 6-blade one, given that they have similar efficiencies. Blade tip vortices are found emitting broadband noise. Since the classical and conceptual 3-blade propellers have different geometries, especially at the blade tips, they introduce deviations in the vortex development. However, the differences are small regarding the broadband noise generation. As compared to the 6-blade classical propeller, both 3-blade propellers produce much larger noise. The reason is that the increased number of blades leads to the reduced strength of tip vortices. The findings indicate that the noise mitigation through the modification of the blade design and number can be traded-off by the changed aerodynamic performance

    Science, technology and the future of small autonomous drones

    Get PDF
    We are witnessing the advent of a new era of robots — drones — that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications
    • 

    corecore