10,005 research outputs found

    A group-theoretic approach to formalizing bootstrapping problems

    Get PDF
    The bootstrapping problem consists in designing agents that learn a model of themselves and the world, and utilize it to achieve useful tasks. It is different from other learning problems as the agent starts with uninterpreted observations and commands, and with minimal prior information about the world. In this paper, we give a mathematical formalization of this aspect of the problem. We argue that the vague constraint of having "no prior information" can be recast as a precise algebraic condition on the agent: that its behavior is invariant to particular classes of nuisances on the world, which we show can be well represented by actions of groups (diffeomorphisms, permutations, linear transformations) on observations and commands. We then introduce the class of bilinear gradient dynamics sensors (BGDS) as a candidate for learning generic robotic sensorimotor cascades. We show how framing the problem as rejection of group nuisances allows a compact and modular analysis of typical preprocessing stages, such as learning the topology of the sensors. We demonstrate learning and using such models on real-world range-finder and camera data from publicly available datasets

    On properties of modeling control software for embedded control applications with CSP/CT framework

    Get PDF
    This PROGRESS project (TES.5224) traces a design framework for implementing embedded real-time software for control applications by exploiting its natural concurrency. The paper illustrates the stage of yielded automation in the process of structuring complex control software architectures, modeling controlled mechatronic systems and designing corresponding control laws, simulating them, generating control code out of simulated control strategy and implementing the software system on a (embedded) computer. The gap between the development of control strategies and the procedures of implementing them on chosen hardware targets is going to be overcome

    Multi-Modal Human-Machine Communication for Instructing Robot Grasping Tasks

    Full text link
    A major challenge for the realization of intelligent robots is to supply them with cognitive abilities in order to allow ordinary users to program them easily and intuitively. One way of such programming is teaching work tasks by interactive demonstration. To make this effective and convenient for the user, the machine must be capable to establish a common focus of attention and be able to use and integrate spoken instructions, visual perceptions, and non-verbal clues like gestural commands. We report progress in building a hybrid architecture that combines statistical methods, neural networks, and finite state machines into an integrated system for instructing grasping tasks by man-machine interaction. The system combines the GRAVIS-robot for visual attention and gestural instruction with an intelligent interface for speech recognition and linguistic interpretation, and an modality fusion module to allow multi-modal task-oriented man-machine communication with respect to dextrous robot manipulation of objects.Comment: 7 pages, 8 figure

    The Anthropomorphic Hand Assessment Protocol (AHAP)

    Get PDF
    The progress in the development of anthropomorphic hands for robotic and prosthetic applications has not been followed by a parallel development of objective methods to evaluate their performance. The need for benchmarking in grasping research has been recognized by the robotics community as an important topic. In this study we present the Anthropomorphic Hand Assessment Protocol (AHAP) to address this need by providing a measure for quantifying the grasping ability of artificial hands and comparing hand designs. To this end, the AHAP uses 25 objects from the publicly available Yale-CMU-Berkeley Object and Model Set thereby enabling replicability. It is composed of 26 postures/tasks involving grasping with the eight most relevant human grasp types and two non-grasping postures. The AHAP allows to quantify the anthropomorphism and functionality of artificial hands through a numerical Grasping Ability Score (GAS). The AHAP was tested with different hands, the first version of the hand of the humanoid robot ARMAR-6 with three different configurations resulting from attachment of pads to fingertips and palm as well as the two versions of the KIT Prosthetic Hand. The benchmark was used to demonstrate the improvements of these hands in aspects like the grasping surface, the grasp force and the finger kinematics. The reliability, consistency and responsiveness of the benchmark have been statistically analyzed, indicating that the AHAP is a powerful tool for evaluating and comparing different artificial hand designs

    Building ArtBots to attract students into STEM learning

    Get PDF
    There is an increasing worldwide demand for people educated into science and technology. Unfortunately, girls and underprivileged students are often underrepresented in Science, Technology, Engineering and Mathematics (STEM) education programs. We believe that by inclusion of art in these programs, educational activities might become more attractive to a broader audience. In this work we present an example of such an educational activity: an international robotics and art week for secondary school students. This educational activity builds up on the project-based and inquiry learning framework. This article is intended as a brief manual to help others organise such an activity. It also gives insights in how we led a highly heterogeneous group of students into learning STEM and becoming science and technology ambassadors for their peers
    • …
    corecore