6,957 research outputs found

    Parallelized Particle and Gaussian Sum Particle Filters for Large Scale Freeway Traffic Systems

    Get PDF
    Large scale traffic systems require techniques able to: 1) deal with high amounts of data and heterogenous data coming from different types of sensors, 2) provide robustness in the presence of sparse sensor data, 3) incorporate different models that can deal with various traffic regimes, 4) cope with multimodal conditional probability density functions for the states. Often centralized architectures face challenges due to high communication demands. This paper develops new estimation techniques able to cope with these problems of large traffic network systems. These are Parallelized Particle Filters (PPFs) and a Parallelized Gaussian Sum Particle Filter (PGSPF) that are suitable for on-line traffic management. We show how complex probability density functions of the high dimensional trafc state can be decomposed into functions with simpler forms and the whole estimation problem solved in an efcient way. The proposed approach is general, with limited interactions which reduces the computational time and provides high estimation accuracy. The efciency of the PPFs and PGSPFs is evaluated in terms of accuracy, complexity and communication demands and compared with the case where all processing is centralized

    A distributed agent architecture for real-time knowledge-based systems: Real-time expert systems project, phase 1

    Get PDF
    We propose a distributed agent architecture (DAA) that can support a variety of paradigms based on both traditional real-time computing and artificial intelligence. DAA consists of distributed agents that are classified into two categories: reactive and cognitive. Reactive agents can be implemented directly in Ada to meet hard real-time requirements and be deployed on on-board embedded processors. A traditional real-time computing methodology under consideration is the rate monotonic theory that can guarantee schedulability based on analytical methods. AI techniques under consideration for reactive agents are approximate or anytime reasoning that can be implemented using Bayesian belief networks as in Guardian. Cognitive agents are traditional expert systems that can be implemented in ART-Ada to meet soft real-time requirements. During the initial design of cognitive agents, it is critical to consider the migration path that would allow initial deployment on ground-based workstations with eventual deployment on on-board processors. ART-Ada technology enables this migration while Lisp-based technologies make it difficult if not impossible. In addition to reactive and cognitive agents, a meta-level agent would be needed to coordinate multiple agents and to provide meta-level control

    Predicting water quality and ecological responses

    Get PDF
    Abstract Changes to climate are predicted to have effects on freshwater streams. Stream flows are likely to change, with implications for freshwater ecosystems and water quality. Other stressors such as population growth, community preferences and management policies can be expected to interact in various ways with climate change and stream flows, and outcomes for freshwater ecosystems and water quality are uncertain. Managers of freshwater ecosystems and water supplies could benefit from being able to predict the scales of likely changes. This project has developed and applied a linked modelling framework to assess climate change impacts on water quality regimes and ecological responses. The framework is designed to inform water planning and climate adaptation activities. It integrates quantitative tools, and predicts relationships between future climate, human activities, water quality and ecology, thereby filling a gap left by the considerable research effort so far invested in predicting stream flows. The modelling framework allows managers to explore potential changes in the water quality and ecology of freshwater systems in response to plausible scenarios for climate change and management adaptations. Although set up for the Upper Murrumbidgee River catchment in southern NSW and ACT, the framework was planned to be transferable to other regions where suitable data are available. The approach and learning from the project appear to have the potential to be broadly applicable. We selected six climate scenarios representing minor, moderate and major changes in flow characteristics for 1oC and 2oC temperature increases. These were combined with four plausible alternative management adaptations that might be used to modify water supply, urban water demand and stream flow regimes in the Upper Murrumbidgee catchment. The Bayesian Network (BN) model structure we used was developed using both a ‘top down’ and ‘bottom up’ approach. From analyses combined with expert advice, we identified the causal structure linking climate variables to stream flow, water quality attributes, land management and ecological responses (top down). The ‘bottom up’ approach focused on key ecological outcomes and key drivers, and helped produce efficient models. The result was six models for macroinvertebrates, and one for fish. In the macroinvertebrate BN models, nodes were discretised using statistical/empirical derived thresholds using new techniques. The framework made it possible to explore how ecological communities respond to changes in climate and management activities. Particularly, we focused on the effects of water quality and quantity on ecological responses. The models showed a strong regional response reflecting differences across 18 regions in the catchment. In two regions the management alternatives were predicted to have stronger effects than climate change. In three other regions the predicted response to climate change was stronger. Analyses of water quality suggested minor changes in the probability of water quality exceeding thresholds designed to protect aquatic ecosystems. The ‘bottom up’ approach limited the framework’s transferability by being specific to the Upper Murrumbidgee catchment data. Indeed, to meet stakeholder questions models need to be specifically tailored. Therefore the report proposes a general model-building framework for transferring the approach, rather than the models, to other regions.  Please cite this report as: Dyer, F, El Sawah, S, Lucena-Moya, P, Harrison, E, Croke, B, Tschierschke, A, Griffiths, R, Brawata, R, Kath, J, Reynoldson, T, Jakeman, T 2013 Predicting water quality and ecological responses, National Climate Change Adaptation Research Facility, Gold Coast, pp. 110 Changes to climate are predicted to have effects on freshwater streams. Stream flows are likely to change, with implications for freshwater ecosystems and water quality. Other stressors such as population growth, community preferences and management policies can be expected to interact in various ways with climate change and stream flows, and outcomes for freshwater ecosystems and water quality are uncertain. Managers of freshwater ecosystems and water supplies could benefit from being able to predict the scales of likely changes. This project has developed and applied a linked modelling framework to assess climate change impacts on water quality regimes and ecological responses. The framework is designed to inform water planning and climate adaptation activities. It integrates quantitative tools, and predicts relationships between future climate, human activities, water quality and ecology, thereby filling a gap left by the considerable research effort so far invested in predicting stream flows. The modelling framework allows managers to explore potential changes in the water quality and ecology of freshwater systems in response to plausible scenarios for climate change and management adaptations. Although set up for the Upper Murrumbidgee River catchment in southern NSW and ACT, the framework was planned to be transferable to other regions where suitable data are available. The approach and learning from the project appear to have the potential to be broadly applicable. We selected six climate scenarios representing minor, moderate and major changes in flow characteristics for 1oC and 2oC temperature increases. These were combined with four plausible alternative management adaptations that might be used to modify water supply, urban water demand and stream flow regimes in the Upper Murrumbidgee catchment. The Bayesian Network (BN) model structure we used was developed using both a ‘top down’ and ‘bottom up’ approach. From analyses combined with expert advice, we identified the causal structure linking climate variables to stream flow, water quality attributes, land management and ecological responses (top down). The ‘bottom up’ approach focused on key ecological outcomes and key drivers, and helped produce efficient models. The result was six models for macroinvertebrates, and one for fish. In the macroinvertebrate BN models, nodes were discretised using statistical/empirical derived thresholds using new techniques. The framework made it possible to explore how ecological communities respond to changes in climate and management activities. Particularly, we focused on the effects of water quality and quantity on ecological responses. The models showed a strong regional response reflecting differences across 18 regions in the catchment. In two regions the management alternatives were predicted to have stronger effects than climate change. In three other regions the predicted response to climate change was stronger. Analyses of water quality suggested minor changes in the probability of water quality exceeding thresholds designed to protect aquatic ecosystems. The ‘bottom up’ approach limited the framework’s transferability by being specific to the Upper Murrumbidgee catchment data. Indeed, to meet stakeholder questions models need to be specifically tailored. Therefore the report proposes a general model-building framework for transferring the approach, rather than the models, to other regions.&nbsp

    An Evidence Based Approach To Determining Residential Occupancy and its Role in Demand Response Management

    Get PDF
    AbstractThis article introduces a methodological approach for analysing time series data from multiple sensors in order to estimate home occupancy. The approach combines the Dempster-Shafer theory, which allows the fusion of ‘evidence’ from multiple sensors, with the Hidden Markov Model. The procedure addresses some of the practicalities of occupancy estimation including the blind estimation of sensor distributions during unoccupied and occupied states, and issues of occupancy inference when some sensors have missing data. The approach is applied to preliminary data from a residential family home on the North Coast of Scotland. Features derived from sensors that monitored electrical power, dew point temperature and indoor CO2 concentration were fused and the Hidden Markov Model applied to predict the occupancy profile. The approach shown is able to predict daytime occupancy, while effectively handling periods of missing sensor data, according to cross-validation with available ground truth information. Knowledge of occupancy is then fused with consumption behaviour and a simple metric developed to allow the assessment of how likely it is that a household can participate in demand response at different periods during the day. The benefits of demand response initiatives are qualitatively discussed. The approach could be used to assist in the transition towards more active energy citizens, as envisaged by the smart grid

    Artificial intelligence and machine learning in the era of digital transformer monitoring: Exciting developments at Hitachi Energy

    Get PDF
    The era of digitalization brings new challenges and new paradigms since transformer users and manufacturers alike are moving towards digital solutions. This transition requires new approaches, new architectures, and new ways of looking at data collection, storage, and assessment. Speed and reliability of actionable information become essential at a time when data is ubiquitous, loads are more complex, and energy production moves from traditional plants to distributed generation. This article intends to show some of the ongoing efforts at Hitachi Energy to address these and other demanding technical and economic issues. Our wind power forecast approach deals with the problem of uncertainty in upcoming power demand. We propose a machine learning model to predict power demand to improve the calculation of loadability and cooling / hotspot calculations. Similarly, our Bushing Tan δ and Capacitance Fault Detection solution uses the error of a model to detect problems with Tan δ and capacitance. Our Probabilistic Fault Tree describes an open-source approach that uses Bayesian networks to find the probability of failure of a specific transformer. Finally, we describe two publications made by our team regarding the use of synthetic data created using the Duval Pentagons to generate a model that diagnoses transformer faults; and a patent regarding the creation of an infrastructure that uses blockchain to anonymize users and provide them with information about their transformer fleet using artificial intelligence

    Robust estimation of risks from small samples

    Get PDF
    Data-driven risk analysis involves the inference of probability distributions from measured or simulated data. In the case of a highly reliable system, such as the electricity grid, the amount of relevant data is often exceedingly limited, but the impact of estimation errors may be very large. This paper presents a robust nonparametric Bayesian method to infer possible underlying distributions. The method obtains rigorous error bounds even for small samples taken from ill-behaved distributions. The approach taken has a natural interpretation in terms of the intervals between ordered observations, where allocation of probability mass across intervals is well-specified, but the location of that mass within each interval is unconstrained. This formulation gives rise to a straightforward computational resampling method: Bayesian Interval Sampling. In a comparison with common alternative approaches, it is shown to satisfy strict error bounds even for ill-behaved distributions.Comment: 13 pages, 3 figures; supplementary information provided. A revised version of this manuscript has been accepted for publication in Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Science

    Artificial intelligence and machine learning in the era of digital transformer monitoring: Exciting developments at Hitachi Energy

    Get PDF
    The era of digitalization brings new challenges and new paradigms since transformer users and manufacturers alike are moving towards digital solutions. This transition requires new approaches, new architectures, and new ways of looking at data collection, storage, and assessment. Speed and reliability of actionable information become essential at a time when data is ubiquitous, loads are more complex, and energy production moves from traditional plants to distributed generation. This article intends to show some of the ongoing efforts at Hitachi Energy to address these and other demanding technical and economic issues. Our wind power forecast approach deals with the problem of uncertainty in upcoming power demand. We propose a machine learning model to predict power demand to improve the calculation of loadability and cooling / hotspot calculations. Similarly, our Bushing Tan δ and Capacitance Fault Detection solution uses the error of a model to detect problems with Tan δ and capacitance. Our Probabilistic Fault Tree describes an open-source approach that uses Bayesian networks to find the probability of failure of a specific transformer. Finally, we describe two publications made by our team regarding the use of synthetic data created using the Duval Pentagons to generate a model that diagnoses transformer faults; and a patent regarding the creation of an infrastructure that uses blockchain to anonymize users and provide them with information about their transformer fleet using artificial intelligence
    • …
    corecore