232 research outputs found

    Intelligent methods for complex systems control engineering

    Get PDF
    This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions

    A sensorless state estimation for a safety-oriented cyber-physical system in urban driving : deep learning approach

    Get PDF
    In today's modern electric vehicles, enhancing the safety-critical cyber-physical system CPS 's performance is necessary for the safe maneuverability of the vehicle. As a typical CPS, the braking system is crucial for the vehicle design and safe control. However, precise state estimation of the brake pressure is desired to perform safe driving with a high degree of autonomy. In this paper, a sensorless state estimation technique of the vehicle's brake pressure is developed using a deep-learning approach. A deep neural network DNN is structured and trained using deep-learning training techniques, such as, dropout and rectified units. These techniques are utilized to obtain more accurate model for brake pressure state estimation applications. The proposed model is trained using real experimental training data which were collected via conducting real vehicle testing. The vehicle was attached to a chassis dynamometer while the brake pressure data were collected under random driving cycles. Based on these experimental data, the DNN is trained and the performance of the proposed state estimation approach is validated accordingly. The results demonstrate high-accuracy brake pressure state estimation with RMSE of 0.048 MPa.Published versio

    Vehicle dynamics virtual sensing and advanced motion control for highly skilled autonomous vehicles

    Get PDF
    This dissertation is aimed at elucidating the path towards the development of a future generation of highly-skilled autonomous vehicles (HSAV). In brief, it is envisaged that future HSAVs will be able to exhibit advanced driving skills to maintain the vehicle within stable limits in spite of the driving conditions (limits of handling) or environmental adversities (e.g. low manoeuvrability surfaces). Current research lines on intelligent systems indicate that such advanced driving behaviour may be realised by means of expert systems capable of monitoring the current vehicle states, learning the road friction conditions, and adapting their behaviour depending on the identified situation. Such adaptation skills are often exhibited by professional motorsport drivers, who fine-tune their driving behaviour depending on the road geometry or tyre-friction characteristics. On this basis, expert systems incorporating advanced driving functions inspired by the techniques seen on highly-skilled drivers (e.g. high body slip control) are proposed to extend the operating region of autonomous vehicles and achieve high-level automation (e.g. manoeuvrability enhancement on low-adherence surfaces). Specifically, two major research topics are covered in detail in this dissertation to conceive these expert systems: vehicle dynamics virtual sensing and advanced motion control. With regards to the former, a comprehensive research is undertaken to propose virtual sensors able to estimate the vehicle planar motion states and learn the road friction characteristics from readily available measurements. In what concerns motion control, systems to mimic advanced driving skills and achieve robust path-following ability are pursued. An optimal coordinated action of different chassis subsystems (e.g. steering and individual torque control) is sought by the adoption of a centralised multi-actuated system framework. The virtual sensors developed in this work are validated experimentally with the Vehicle-Based Objective Tyre Testing (VBOTT) research testbed of JAGUAR LAND ROVER and the advanced motion control functions with the Multi-Actuated Ground Vehicle “DevBot” of ARRIVAL and ROBORACE.Diese Dissertation soll den Weg zur Entwicklung einer zukünftigen Generation hochqualifizierter autonomer Fahrzeuge (HSAV) aufzeigen. Kurz gesagt, es ist beabsichtigt, dass zukünftige HSAVs fortgeschrittene Fahrfähigkeiten aufweisen können, um das Fahrzeug trotz der Fahrbedingungen (Grenzen des Fahrverhaltens) oder Umgebungsbedingungen (z. B. Oberflächen mit geringer Manövrierfähigkeit) in stabilen Grenzen zu halten. Aktuelle Forschungslinien zu intelligenten Systemen weisen darauf hin, dass ein solches fortschrittliches Fahrverhalten mit Hilfe von Expertensystemen realisiert werden kann, die in der Lage sind, die aktuellen Fahrzeugzustände zu überwachen, die Straßenreibungsbedingungen kennenzulernen und ihr Verhalten in Abhängigkeit von der ermittelten Situation anzupassen. Solche Anpassungsfähigkeiten werden häufig von professionellen Motorsportfahrern gezeigt, die ihr Fahrverhalten in Abhängigkeit von der Straßengeometrie oder den Reifenreibungsmerkmalen abstimmen. Auf dieser Grundlage werden Expertensysteme mit fortschrittlichen Fahrfunktionen vorgeschlagen, die auf den Techniken hochqualifizierter Fahrer basieren (z. B. hohe Schlupfregelung), um den Betriebsbereich autonomer Fahrzeuge zu erweitern und eine Automatisierung auf hohem Niveau zu erreichen (z. B. Verbesserung der Manövrierfähigkeit auf niedrigem Niveau) -haftende Oberflächen). Um diese Expertensysteme zu konzipieren, werden zwei große Forschungsthemen in dieser Dissertation ausführlich behandelt: Fahrdynamik-virtuelle Wahrnehmung und fortschrittliche Bewegungssteuerung. In Bezug auf erstere wird eine umfassende Forschung durchgeführt, um virtuelle Sensoren vorzuschlagen, die in der Lage sind, die Bewegungszustände der Fahrzeugebenen abzuschätzen und die Straßenreibungseigenschaften aus leicht verfügbaren Messungen kennenzulernen. In Bezug auf die Bewegungssteuerung werden Systeme zur Nachahmung fortgeschrittener Fahrfähigkeiten und zum Erzielen einer robusten Wegfolgefähigkeit angestrebt. Eine optimale koordinierte Wirkung verschiedener Fahrgestellsubsysteme (z. B. Lenkung und individuelle Drehmomentsteuerung) wird durch die Annahme eines zentralisierten, mehrfach betätigten Systemrahmens angestrebt. Die in dieser Arbeit entwickelten virtuellen Sensoren wurden experimentell mit dem Vehicle-Based Objective Tyre Testing (VBOTT) - Prüfstand von JAGUAR LAND ROVER und den fortschrittlichen Bewegungssteuerungsfunktionen mit dem mehrfach betätigten Bodenfahrzeug ”DevBot” von ARRIVAL und ROBORACE validiert

    Intelligent methods for complex systems control engineering

    Get PDF
    This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and Multi-Input Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions.EThOS - Electronic Theses Online ServiceBiruni Remote Sensing Centre, LibyaGBUnited Kingdo

    Road Friction Virtual Sensing:A Review of Estimation Techniques with Emphasis on Low Excitation Approaches

    Get PDF
    In this paper, a review on road friction virtual sensing approaches is provided. In particular, this work attempts to address whether the road grip potential can be estimated accurately under regular driving conditions in which the vehicle responses remain within low longitudinal and lateral excitation levels. This review covers in detail the most relevant effect-based estimation methods; these are methods in which the road friction characteristics are inferred from the tyre responses: tyre slip, tyre vibration, and tyre noise. Slip-based approaches (longitudinal dynamics, lateral dynamics, and tyre self-alignment moment) are covered in the first part of the review, while low frequency and high frequency vibration-based works are presented in the following sections. Finally, a brief summary containing the main advantages and drawbacks derived from each estimation method and the future envisaged research lines are presented in the last sections of the paper

    Correct-By-Construction Control Synthesis for Systems with Disturbance and Uncertainty

    Full text link
    This dissertation focuses on correct-by-construction control synthesis for Cyber-Physical Systems (CPS) under model uncertainty and disturbance. CPSs are systems that interact with the physical world and perform complicated dynamic tasks where safety is often the overriding factor. Correct-by-construction control synthesis is a concept that provides formal performance guarantees to closed-loop systems by rigorous mathematic reasoning. Since CPSs interact with the environment, disturbance and modeling uncertainty are critical to the success of the control synthesis. Disturbance and uncertainty may come from a variety of sources, such as exogenous disturbance, the disturbance caused by co-existing controllers and modeling uncertainty. To better accommodate the different types of disturbance and uncertainty, the verification and control synthesis methods must be chosen accordingly. Four approaches are included in this dissertation. First, to deal with exogenous disturbance, a polar algorithm is developed to compute an avoidable set for obstacle avoidance. Second, a supervised learning based method is proposed to design a good student controller that has safety built-in and rarely triggers the intervention of the supervisory controller, thus targeting the design of the student controller. Third, to deal with the disturbance caused by co-existing controllers, a Lyapunov verification method is proposed to formally verify the safety of coexisting controllers while respecting the confidentiality requirement. Finally, a data-driven approach is proposed to deal with model uncertainty. A minimal robust control invariant set is computed for an uncertain dynamic system without a given model by first identifying the set of admissible models and then simultaneously computing the invariant set while selecting the optimal model. The proposed methods are applicable to many real-world applications and reflect the notion of using the structure of the system to achieve performance guarantees without being overly conservative.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145933/1/chenyx_1.pd

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Actuators for Intelligent Electric Vehicles

    Get PDF
    This book details the advanced actuators for IEVs and the control algorithm design. In the actuator design, the configuration four-wheel independent drive/steering electric vehicles is reviewed. An in-wheel two-speed AMT with selectable one-way clutch is designed for IEV. Considering uncertainties, the optimization design for the planetary gear train of IEV is conducted. An electric power steering system is designed for IEV. In addition, advanced control algorithms are proposed in favour of active safety improvement. A supervision mechanism is applied to the segment drift control of autonomous driving. Double super-resolution network is used to design the intelligent driving algorithm. Torque distribution control technology and four-wheel steering technology are utilized for path tracking and adaptive cruise control. To advance the control accuracy, advanced estimation algorithms are studied in this book. The tyre-road peak friction coefficient under full slip rate range is identified based on the normalized tyre model. The pressure of the electro-hydraulic brake system is estimated based on signal fusion. Besides, a multi-semantic driver behaviour recognition model of autonomous vehicles is designed using confidence fusion mechanism. Moreover, a mono-vision based lateral localization system of low-cost autonomous vehicles is proposed with deep learning curb detection. To sum up, the discussed advanced actuators, control and estimation algorithms are beneficial to the active safety improvement of IEVs

    Applications of Genetic Algorithm and Its Variants in Rail Vehicle Systems: A Bibliometric Analysis and Comprehensive Review

    Get PDF
    Railway systems are time-varying and complex systems with nonlinear behaviors that require effective optimization techniques to achieve optimal performance. Evolutionary algorithms methods have emerged as a popular optimization technique in recent years due to their ability to handle complex, multi-objective issues of such systems. In this context, genetic algorithm (GA) as one of the powerful optimization techniques has been extensively used in the railway sector, and applied to various problems such as scheduling, routing, forecasting, design, maintenance, and allocation. This paper presents a review of the applications of GAs and their variants in the railway domain together with bibliometric analysis. The paper covers highly cited and recent studies that have employed GAs in the railway sector and discuss the challenges and opportunities of using GAs in railway optimization problems. Meanwhile, the most popular hybrid GAs as the combination of GA and other evolutionary algorithms methods such as particle swarm optimization (PSO), ant colony optimization (ACO), neural network (NN), fuzzy-logic control, etc with their dedicated application in the railway domain are discussed too. More than 250 publications are listed and classified to provide a comprehensive analysis and road map for experts and researchers in the field helping them to identify research gaps and opportunities
    corecore