901 research outputs found

    Performance and Extreme Conditions Analysis Based on Iterative Modelling Algorithm for Multi-Trailer AGVs

    Get PDF
    Automatic guidance vehicles (AGV) are industrial vehicles that play an important role in the development of smart manufacturing systems and Industry 4.0. To provide these autonomous systems with the flexibility that is required today in these industrial workspaces, AGV computational models are necessary in order to analyze their performance and design efficient planning and control strategies. To address these issues, in this work, the mathematical model and the algorithm that implement a computational control-oriented simulation model of a hybrid tricycle-differential AGV with multi-trailers have been developed. Physical factors, such as wheel-ground interaction and the effect of vertical and lateral loads on its dynamics, have been incorporated into the model. The model has been tested in simulation with two different controllers and three trajectories: a circumference, a square, and an s-shaped curve. Furthermore, it has been used to analyze extreme situations of slipping and capsizing and the influence of the number of trailers on the tracking error and the control effort. This way, the minimum lateral friction coefficient to avoid slipping and the minimum ratio between the lateral and height displacement of the center of gravity to avoid capsizing have been obtained. In addition, the effect of a change in the friction coefficient has also been simulated

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    Unmanned Ground Vehicles for Smart Farms

    Get PDF
    Forecasts of world population increases in the coming decades demand new production processes that are more efficient, safer, and less destructive to the environment. Industries are working to fulfill this mission by developing the smart factory concept. The agriculture world should follow industry leadership and develop approaches to implement the smart farm concept. One of the most vital elements that must be configured to meet the requirements of the new smart farms is the unmanned ground vehicles (UGV). Thus, this chapter focuses on the characteristics that the UGVs must have to function efficiently in this type of future farm. Two main approaches are discussed: automating conventional vehicles and developing specifically designed mobile platforms. The latter includes both wheeled and wheel-legged robots and an analysis of their adaptability to terrain and crops

    Path Following and Motion Control for Articulated Frame Steering Mobile Working Machine Using ROS2

    Get PDF
    Autonomous vehicles (AVs) have been studied and researched at least since the middle of 19s century, and the interest in these vehicles has grown in the last decade. There are many vehicle types with different steering techniques. Each is designed and manufactured depending on the need to perform specific tasks (for example, transporting passengers, transporting goods, and doing heavy duties like cutting trees, digging earth, and harvesting crops). This thesis highlights the autonomous articulated frame steering (AFS) heavy-duty mobile working machines and aims to address the problems of autonomizing the AFS machine with basic autonomy requirements, which makes the machine move without the need for human direct and indirect control. The working environment (like mines, forests, and construction sites), where heavy-duty machines are used to perform some tasks, requires an expert machine operator to drive it and control its manipulator, which increases the operator’s workload. However, due to the working environment’s limited area, the machine mostly has repetitive tasks that include following the same paths; therefore, we proposed implementing a path-following control system that could be used to help the operator by reducing the work amount. The proposed path following is based on controlling the vehicle’s position and orientation to match the desired positions and orientation on a specified path where the position’s lateral error and orientation error are minimized to zero while the vehicle follows the given path. The implemented control system is divided into many subsystems; each is responsible for a specific task, and to communicate between them we used the Robot Operating System ROS2. In this thesis, we are focusing on two of these subsystems. The first subsystem, called path following that, generates linear and angular velocities needed to make the machine follow the path. The other subsystem, called motion control, is responsible for converting the linear and angular velocities to machine commands (gear, steering, gas) and controls the machine’s acceleration and steering angle. The implemented path-following control system required understanding the machine’s kinematics and modeling the steering system. The implemented system is tested first using an AFS robot in a simulation environment, then tested on a real AFS heavy-duty machine owned by Tampere university. Moreover, the tests repeated for another path following based on the modified pure pursuit technique provided by ROS2 navigation for compression and evaluation purposes

    Raskaiden pyörällisten mobiilirobottien mallinnus, simulointi ja radanseuranta

    Get PDF
    Autonomous vehicles have been studied at least since the 1950s. During the last decade, interest towards this field of study has grown imposingly. Path-following control is one of the main subjects among autonomous vehicles. The focus in path-following control is in controlling of the pose of the vehicle to match with the desired pose, which is provided by a specified path or trajectory. Usually the pose is represented in a two-dimensional world frame by the means of x and y coordinates and angle of heading. The methods used in this thesis are modelling and simulation (M&S). M&S of physical systems is a well-recognized field of expertise among engineering sciences. Rapid system prototyping, control designing, or studying an existing system by the means of M&S provide possibilities for observing, developing, and testing under risk-free environment. In this thesis, using the M&S methods provides possibilities for fast and economical evaluation of the designed algorithms before considering prototype testing with actual systems under real environments. Objectives of the thesis are to implement dynamic robot models of two vehicles, design high-level controller structures for their actuators, implement a path-following controller, and study the behaviour of the robots during various autonomous path-following scenarios. The vehicles to be modelled are Ponsse Caribou S10 and Haulotte 16RTJ PRO. The exact study vehicles are owned by Tampere University of Technology. Results from closed loop path-following control of the modelled robots denoted accurate path-following under well-behaved path curvatures, generally with a mean absolute lateral position error less than 0.1 m. In the best simulation results, mean position errors were under of 0.05 m. The implemented controllers proved to be effective at the whole velocity range of the forwarder Ponsse Caribou S10. The implemented high-level inverse kinematic controllers succeeded in synchronous commanding of the robots’ actuators. Due to the forming of the inverse kinematics, the path-following controller was able to output identical control signals independent of the steering structure of the vehicle, thus permitting a possibility for future development among more advanced path-following control

    Modelling and control of an articulated underground mining vehicle

    Get PDF
    The automation of the tramming or load, haul and dump (LHD) procedure, performed by a LHD vehicle, holds the potential to improve productivity, efficiency and safety in the mining environment. Productivity is mainly increased by longer working hours; efficiency is improved by repetitive, faultless and predictable work; and safety is improved by removing the human operator from the harsh environment. However, before the automation of the process can be addressed, a thorough understanding of the process and its duty in the overall mining method is required. Therefore, the current applicable mining methods and their areas of potential automation are given. Since the automation of the LHD vehicle is at the core of this project, its implementation in the tramming process is also justified. Also, the current underground navigation methods are given and their shortcomings are named. It is concluded that infrastructure-free navigation is the only viable solution in the ever-changing mining environment. With that in mind, the feasibility of various navigation sensors is discussed and conclusions are drawn. Both kinematic and dynamic modelling of LHD vehicles are introduced. Various forms of kinematic models are given and their underlying modelling assumptions are named. The most prominent assumptions concern the vehicle’s half-length and the inclusion of a wheel-slip factor. Dynamic modelling techniques, with a strong emphasis on tyre modelling, are also stated. In order to evaluate the modelling techniques, field tests are performed on the articulated vehicles, namely the Wright 365 LHD and the Bell 1706C loader. The test on the Wright 365 LHD gives a good impression of the harsh ergonomics under which the operator has to work. A more thorough test is performed on the Bell 1706C articulated loader. The test results are then compared to simulation results obtained from the kinematic models. Also, the above-named assumptions are tested, evaluated and discussed. A dynamic model is also simulated and discussed. Lastly, two localization and control methods are given and evaluated. The first method is an open-loop nonlinear optimal control strategy with periodic position resetting and the second method is a pathtracking controller. AFRIKAANS : Automatisering van die laai-, vervoer- en dompel- (LVD) prosedure het die potensiaal om die produktiwiteit, effektiwiteit en veiligheid van die mynbedryf te verbeter. Produktiwiteit word hoofsaaklik deur langer werksure verhoog, effektiwiteit word deur herhalende, foutlose en voorspelbare werk verbeter en veiligheid word verbeter omdat menslike operateurs uit die gevaarlike ondergrondse omgewing verwyder word. Voordat aandag aan die automatisering van die prosedure geskenk kan word, moet die prosedure en die algemene mynbedrywighede rakende die prosedure deeglik bestudeer en verstaan word. As gevolg hiervan word die huidige, toepaslike mynboumetodes hier gedokumenteer. Die implementering van ʼn gekoppelde LVD-voertuig in die LVD-prosesword ook geregverdig. Verder word die huidige metodes van ondergrondse navigasie genoem en hulle tekortkominge aangedui. Die gevolgtrekking dat infrastruktuur-vrye navigasie die enigste lewensvatbare navigasiemetode in die immer veranderende ondergrondsemynbouomgewing is, word ook gemaak. In die lig daarvan word ʼn verskeidenheid sensors genoem en bespreek. Kinematiese en dinamiese modellering van ʼn LVD-voertuig word bekendgestel. Verskeie kinematiese modelle en hulle onderliggende aannames word genoem. Die mees prominente aannames is die lengte van die gekoppelde voertuig se hoofdele en die insluiting van ʼn wielglipfaktor. Die tegnieke van dinamiese modellering, met die klem op bandmodellering, word ook gegee. Praktyktoetse op gekoppelde voertuie is ook gedoen om die verskillende modelle te evalueer. Die toets op die Wright 365-LVD bied goeie insig in die strawwe ergonomiese toestande waaronder die operateurs moet werk. ʼn Deeglike toets is op ʼn BELL 1706C- gekoppelde laaier, wat kinematies identies aan ʼn LVD-voertuig is, uitgevoer. Die bevindinge van die toets word met bogenoemde modelsimulasies vergelyk en gevolgtrekkings word gemaak. Laastens word lokalisiering en beheer van ʼn LVDvoertuig behandel. Twee beheermetodes, opelus- nie-lineêre optimale beheer met periodieke herstel en padvolgingbeheer word geëvalueer en bespreek. CopyrightDissertation (MEng)--University of Pretoria, 2012.Electrical, Electronic and Computer Engineeringunrestricte

    Fleets of robots for environmentally-safe pest control in agriculture

    Get PDF
    Feeding the growing global population requires an annual increase in food production. This requirement suggests an increase in the use of pesticides, which represents an unsustainable chemical load for the environment. To reduce pesticide input and preserve the environment while maintaining the necessary level of food production, the efficiency of relevant processes must be drastically improved. Within this context, this research strived to design, develop, test and assess a new generation of automatic and robotic systems for effective weed and pest control aimed at diminishing the use of agricultural chemical inputs, increasing crop quality and improving the health and safety of production operators. To achieve this overall objective, a fleet of heterogeneous ground and aerial robots was developed and equipped with innovative sensors, enhanced end-effectors and improved decision control algorithms to cover a large variety of agricultural situations. This article describes the scientific and technical objectives, challenges and outcomes achieved in three common crops

    A driver model with supervision aspects

    Get PDF
    Human driver compensatory reactions -- Driver intelligence and Path Tracking (supervision) -- From human decision making to design of control level -- Vehicle models -- History of driver models -- Controller for car-like mobile robots -- Control problems of vehicle cartesian coordiantes -- Independent speed control with geometric lateral-offset tracking -- Kinematics dynamics and control of a car-like mobile robot -- Looking ahead path tracking of a car-like mobile robot -- Geometric lateral-offset tracking and speed control of a car-like mobile robot -- Equations of motion of a car-like robot using autolev programming

    Design, analysis and fabrication of an articulated mobile manipulator

    Get PDF
    The process involved in designing, fabricating and analysing a mobile robotic manipulator to carry out pick and place task in a dynamic and unknown environment has been explained here. The manipulator designed and fabricated has a 5 – axis articulated arm for pick and place application but also can be reconfigured to do other tasks. The manipulator is built with its driving or power means fitted at the bottom to distribute the load effectively and also make handling easier. The mobile platform employs a novel suspension system which helps in relatively distributing the load equally to all wheels regardless of the wheels position giving the mobile platform better control and stability. With reference to many available manipulators and mobile platforms in the market, a practical design is perceived using designing tools and a fully functional prototype is fabricated. The kinematic model determining the end effector’s position and orientation is analysed systematically and presented. Navigational controls are built using fuzzy logic and genetic algorithm with the help of the sensors’ information so that the robot can negotiate obstacle while carrying out various tasks in an unknown environment. The path tracking for pick-and-place application is the overall target of this industrial manipulator
    corecore