932 research outputs found

    Insect detection in sticky trap images of tomato crops using machine learning

    Get PDF
    As climate change, biodiversity loss, and biological invaders are all on the rise, the significance of conservation and pest management initiatives cannot be stressed. Insect traps are frequently used in projects to discover and monitor insect populations, assign management and conservation strategies, and assess the effectiveness of treatment. This paper assesses the application of YOLOv5 for detecting insects in yellow sticky traps using images collected from insect traps in Portuguese tomato plantations, acquired under open field conditions. Furthermore, a sliding window approach was used to minimize insect detection duplicates in a non-complex way. This article also contributes to event forecasting in agriculture fields, such as diseases and pests outbreak, by obtaining insect related metrics that can be further analyzed and combined with other data extracted from the crop fields, contributing to smart farming and precision agriculture. The proposed method achieved good results when compared to related works, reaching 94.4% for mAP_0.5, with a precision and recall of 88% and 91%, respectively, using YOLOv5x.info:eu-repo/semantics/publishedVersio

    A Comprehensive Review on Intelligent Techniques in Crop Pests and Diseases

    Get PDF
    Artificial intelligence (AI) has transformative potential in the agricultural sector, particularly in managing and preventing crop diseases and pest infestations. This review discusses the significance of early detection and precise diagnosis of various AI tools and techniques for disease identification, such as image processing, machine learning, and deep learning. It also addresses the challenges of AI implementation in agriculture, including data quality, costs, and ethical concerns. The analysis classifies the hurdles and AI offers benefits such as improved resource management, timely interventions, and enhanced productivity. Collaborative efforts are essential to harness AI's potential for sustainable and resilient agriculture

    Boosting precision crop protection towards agriculture 5.0 via machine learning and emerging technologies: A contextual review

    Get PDF
    Crop protection is a key activity for the sustainability and feasibility of agriculture in a current context of climate change, which is causing the destabilization of agricultural practices and an increase in the incidence of current or invasive pests, and a growing world population that requires guaranteeing the food supply chain and ensuring food security. In view of these events, this article provides a contextual review in six sections on the role of artificial intelligence (AI), machine learning (ML) and other emerging technologies to solve current and future challenges of crop protection. Over time, crop protection has progressed from a primitive agriculture 1.0 (Ag1.0) through various technological developments to reach a level of maturity closelyin line with Ag5.0 (section 1), which is characterized by successfully leveraging ML capacity and modern agricultural devices and machines that perceive, analyze and actuate following the main stages of precision crop protection (section 2). Section 3 presents a taxonomy of ML algorithms that support the development and implementation of precision crop protection, while section 4 analyses the scientific impact of ML on the basis of an extensive bibliometric study of >120 algorithms, outlining the most widely used ML and deep learning (DL) techniques currently applied in relevant case studies on the detection and control of crop diseases, weeds and plagues. Section 5 describes 39 emerging technologies in the fields of smart sensors and other advanced hardware devices, telecommunications, proximal and remote sensing, and AI-based robotics that will foreseeably lead the next generation of perception-based, decision-making and actuation systems for digitized, smart and real-time crop protection in a realistic Ag5.0. Finally, section 6 highlights the main conclusions and final remarks

    Impacts of coffee fragmented landscapes on biodiversity and microclimate with emerging monitoring technologies

    Get PDF
    Habitat fragmentation and loss are causing biodiversity declines across the globe. As biodiversity is unevenly distributed, with many hotspots located in the tropics, conserving and protecting these areas is important to preserve as many species as possible. Chapter 2 presents an overview of the Ecology of the Atlantic Forest, a highly fragmented biodiversity hotspot. A major driver of habitat fragmentation is agriculture, and in the tropics coffee is major cash crop. Developing methods to monitor biodiversity effectively without labour intensive surveys can help us understand how communities are using fragmented landscapes and better inform management practices that promote biodiversity. Acoustic monitoring offers a promising set of tools to remotely monitor biodiversity. Developments in machine learning offer automatic species detection and classification in certain taxa. Chapters 3 and 4 use acoustic monitoring surveys conducted on fragmented landscapes in the Atlantic Forest to quantify bird and bat communities in forest and coffee matrix, respectively. Chapter 3 shows that acoustic composition can reflect local avian communities. Chapter 4 applies a convolutional neural network (CNN) optimised on UK bat calls to a Brazilian bat dataset to estimate bat diversity and show how bats preferentially use coffee habitats. In addition to monitoring biodiversity, monitoring microclimate forms a key part of climate smart agriculture for climate change mitigation. Coffee agriculture is limited to the tropics, overlapping with biodiverse regions, but is threatened by climate change. This presents a challenge to countries strongly reliant on coffee exports such as Brazil and Nicaragua. Chapter 5 uses data from microclimate weather stations in Nicaragua to demonstrate that sun-coffee management is vulnerable to supraoptimal temperature exposure regardless of local forest cover or elevation.Open Acces

    Early Detection of Bark Beetle Attack Using Remote Sensing and Machine Learning: A Review

    Full text link
    Bark beetle outbreaks can result in a devastating impact on forest ecosystem processes, biodiversity, forest structure and function, and economies. Accurate and timely detection of bark beetle infestations is crucial to mitigate further damage, develop proactive forest management activities, and minimize economic losses. Incorporating remote sensing (RS) data with machine learning (ML) (or deep learning (DL)) can provide a great alternative to the current approaches that rely on aerial surveys and field surveys, which are impractical over vast geographical regions. This paper provides a comprehensive review of past and current advances in the early detection of bark beetle-induced tree mortality from three key perspectives: bark beetle & host interactions, RS, and ML/DL. We parse recent literature according to bark beetle species & attack phases, host trees, study regions, imagery platforms & sensors, spectral/spatial/temporal resolutions, spectral signatures, spectral vegetation indices (SVIs), ML approaches, learning schemes, task categories, models, algorithms, classes/clusters, features, and DL networks & architectures. This review focuses on challenging early detection, discussing current challenges and potential solutions. Our literature survey suggests that the performance of current ML methods is limited (less than 80%) and depends on various factors, including imagery sensors & resolutions, acquisition dates, and employed features & algorithms/networks. A more promising result from DL networks and then the random forest (RF) algorithm highlighted the potential to detect subtle changes in visible, thermal, and short-wave infrared (SWIR) spectral regions.Comment: Under review, 33 pages, 5 figures, 8 Table
    • …
    corecore