46,990 research outputs found

    Generating health technology assessment evidence for rare diseases

    Get PDF
    Objectives: Rare diseases are often heterogeneous in their progression and response to treatment, with only a small population for study. This provides challenges for evidence generation to support HTA, so novel research methods are required. Methods: Discussion with an expert panel was augmented with references and case studies to explore robust approaches for HTA evidence generation for rare disease treatments. Results: Traditional RCTs can be modified using sequential, three-stage or adaptive designs to gain more power from a small patient population or to focus trial design. However, such designs need to maintain important design aspects such as randomization and blinding and be analyzed to take account of the multiple analyses performed. N-of-1 trials use within-patient randomization to test repeat periods of treatment and control until a response is clear. Such trials could be particularly valuable for rare diseases and when prospectively planned across several patients and analyzed using Bayesian techniques, a population effect can be estimated that might be of value to HTA. When the optimal outcome is unclear in a rare disease, disease specific patient reported outcomes can elucidate impacts on patients’ functioning and wellbeing. Likewise, qualitative research can be used to elicit patients’ perspectives, with just a small number of patients. Conclusions: International consensus is needed on ways to improve evidence collection and assessment of technologies for rare diseases, which recognize the value of novel study designs and analyses in a setting where the outcomes and effects of importance are yet to be agreed.</p

    Simulated Clinical Trias: some design issues

    Get PDF
    Simulation is widely used to investigate real-world systems in a large number of fields, including clinical trials for drug development, since real trials are costly, frequently fail and may lead to serious side effects. This paper is a survey of the statistical issues arising in these simulated trials. We illustrate the broad applicability of this investigation tool by means of examples selected from the literature. We discuss the aims and the peculiarities of the simulation models used in this context, including a brief mention of the use of metamodels. Of special interest is the topic of the design of the virtual experiments, stressing similarities and differences with the design of real life trials. Since it is important for a computerized model to possess a satisfactory range of accuracy consistent with its intended application, real data provided by physical experiments are used to confirm the simulator : we illustrate validating techniques through a number of examples. We end the paper with some challenging questions on the scientificity, ethics and effectiveness of simulation in the clinical research, and the interesting research problem of how to integrate simulated and physical experiments in a clinical context.Simulation models; pharmacokinetics; pharmacodynamics; model validation; experimental design, ethics. Modelli di simulazione; farmacocinetica; farmacodinamica; validazione; disegno degli esperimenti; etica.
    • …
    corecore