15 research outputs found

    Smooth control of an articulated mobile robot with switching constraints

    Get PDF
    The paper describes a smooth controller of an articulated mobile robot with switching constraints. The use of switching constraints associated with grounded/lifted wheels is an effective method of controlling various motions; e.g. the avoidance of a moving obstacle. A model of an articulated mobile robot that has active and passive wheels and active joints with switching constraints is derived. A controller that accomplishes the trajectory tracking of the robot’s head and subtasks using smooth joint input is proposed on the basis of the model. Simulations and experiments are presented to show the effectiveness of the proposed controller

    Control of a Snake Robot for Ascending and Descending Steps

    Get PDF
    This paper proposes control method for a snake robot to ascend and descend steps. In a multiplane step environment, it is necessary for locomotion to transfer from one plane to another. When a snake robot moves, it touches several planes as its body is long and thin. In this paper, we propose a control method to track the trajectory of a snake robot in a step environment. We decomposed the 3-D motion of the robot into two simple models by introducing an assumption that simplifies the model and controller, and derive a model of the robot as a hybrid system with switching. The control method consists of a tracking controller, a method for shifting the robot\u27s part connecting the planes, and active lifting to control the shape of the robot. Ascent and descent experiments confirm the effectiveness of the proposed controller and the method for shifting the connecting part of the robot\u27s body

    Development and Control of Articulated Mobile Robot for Climbing Steep Stairs

    Get PDF
    In this paper, we develop an articulated mobile robot that can climb stairs, and also move in narrow spaces and on 3-D terrain. This paper presents two control methods for this robot. The first is a 3-D steering method that is used to adapt the robot to the surrounding terrain. In this method, the robot relaxes its joints, allowing it to adapt to the terrain using its own weight, and then, resumes its motion employing the follow-the-leader method. The second control method is the semi-autonomous stair climbing method. In this method, the robot connects with the treads of the stairs using a body called a connecting part, and then shifts the connecting part from its head to its tail. The robot then uses the sensor information to shift the connecting part with appropriate timing. The robot can climb stairs using this method even if the stairs are steep, and the sizes of the riser and the tread of the stairs are unknown. Experiments are performed to demonstrate the effectiveness of the proposed methods and the developed robot

    Range-Sensor-Based Semiautonomous Whole-Body Collision Avoidance of a Snake Robot

    Get PDF
    This brief presents a control system for a snake robot based on range sensor data that semiautonomously aids the robot in avoiding collisions with obstacles. In the proposed system, an operator indicates the desired velocity of the first link of the robot using a joystick, and the joint input which accomplishes both the desired velocity of the first link and collision avoidance between subsequent links and obstacles is automatically calculated by the controller, which selects the links needed to be grounded and exploits redundancy. The controller uses real-time data from range sensors for obstacle positions. The experimental system, which has range sensors and the function generating environmental map using simultaneous localization and mapping, was developed with decreasing calculation cost, and experiments were performed to verify the effectiveness of the proposed system in unknown environments

    Shape Control of a Snake Robot With Joint Limit and Self-Collision Avoidance

    Get PDF
    This paper proposes a shape control method for a snake robot, which maintains head position and orientation, and avoids joint limits and self-collision. We used a passive wheeled snake robot that can switch the grounded/lifted status of its wheels. We derived a kinematic model of the robot that represents its redundancy as both joint angles [the shape controllable points (SCPs)] and the null space of the control input. In the control method, the shape is changed by sequential control of the SCPs, and the null space of the control input is used for joint limit and self-collision avoidance. Jumps in control input do not occur, although the controlled variable and the model are switched. Simulations and an experiment were used to demonstrate the effectiveness of the proposed method

    Motion control of a snake robot moving between two non-parallel planes

    Get PDF
    A control method that makes the head of a snake robot follow an arbitrary trajectory on two non-parallel planes, including coexisting sloped and flat planes, is presented. We clarify an appropriate condition of contact between the robot and planes and design a controller for the part of the robot connecting the two planes that satisfies the contact condition. Assuming that the contact condition is satisfied, we derive a simplified model of the robot and design a controller for trajectory tracking of the robot’s head. The controller uses kinematic redundancy to avoid violating the limit of the joint angle and a collision between the robot and the edge of a plane. The effectiveness of the proposed method is demonstrated in experiments using an actual robot

    Task-Space Control of Articulated Mobile Robots With a Soft Gripper for Operations

    Get PDF
    A task-space method is presented for the control of a head-raising articulated mobile robot, allowing the trajectory tracking of a tip of a gripper located on the head of the robot in various operations, e.g., picking up an object and rotating a valve. If the robot cannot continue moving because it reaches a joint angle limit, the robot moves away from the joint limit and changes posture by switching the allocation of lifted/grounded wheels. An articulated mobile robot with a gripper that can grasp objects using jamming transition was developed, and experiments were conducted to demonstrate the effectiveness of the proposed controller in operations

    Development and field test of the articulated mobile robot T2 Snake-4 for plant disaster prevention

    Get PDF
    In this work, we develop an articulated mobile robot that can move in narrow spaces, climb stairs, gather information, and operate valves for plant disaster prevention. The robot can adopt a tall position using a folding arm and gather information using sensors mounted on the arm. In addition, this paper presents a stair climbing method using a single backward wave. This method enables the robot to climb stairs that have a short tread. The developed robot system is tested in a field test at the World Robot Summit 2018, and the lessons learned in the field test are discussed
    corecore