134 research outputs found

    Development of Active Support Splint driven by Pneumatic Soft Actuator (ASSIST)

    Get PDF
    In this study, in order to realize an assist of independent life for the elderly or people in need of care and relieve a physical burden for care worker, an active support splint driven by pneumatic soft actuator (ASSIST) has been developed. ASSIST consists of a plastic interface with the palm and arm and two rotary-type soft actuators put in both sides of appliance. In this paper, the fundamental characteristics of ASSIST is described, and then the effectiveness of this splint is experimentally discussed. Finally, the operation of ASSIST based on a human intention is described. </p

    Development of intelligent McKibben actuator

    Get PDF
    The aim of this study is to develop an intelligent McKibben actuator with an integrated soft displacement sensor inside, so that displacement of this actuator can be controlled without having any extra devices attached. In addition, the high compliance which is a positive feature of the McKibben actuator is still conserved. This paper consists of four main parts. First of all, different types of soft displacement sensors made out of rubber were composed, and tested for their functional characteristics. Secondly, the intelligent McKibben actuator was developed with the soft displacement sensor incorporated within. Then, experiments of the position servo control with a single intelligent McKibben actuator were carried out. At last a robot arm mechanism was designed with two intelligent McKibben actuators, and those experimental results showed a great potential for its future applications.</p

    Pulley-based McKibben actuator mechanism for adjustable soft hand rehabilitation splint

    Get PDF
    Hand rehabilitation robots were developed to assist in rehabilitation procedures conducted by rehabilitation professionals. However, current hand rehabilitation robots are mostly made from heavy and rigid structures that caused discomfort and fitting issues to the patients. McKibben actuator is a type of soft actuator that could be used in hand rehabilitation robots for its flexibility and light weight. However, it has a limited contraction ratio for the required range of motion for finger flexion. In this thesis, a pulley mechanism is proposed to improve McKibben actuator’s contraction ratio while providing the required contraction force. A double groove pulley made of a hybrid of gear and pulley is proposed to enhance McKibben’s actuator contraction ratio. Various pulley ratio was studied to find optimum contraction ratio and its relation to contraction force. A pulley ratio of 1:4 increases the contraction ratio from 19.85 % to 76.67 % but reduces the contraction force from 42.68 N to 9.69 N. Hence, pulley ratio of 1:2 was implemented to the McKibben linear actuator based on its optimized 39.72 % contraction ratio and 20 N contraction force for the soft splint application. Next, an adjustable finger size soft splint with fixed wrist motion was developed. It consists of three parts, namely pulley-based McKibben actuator, wrist component, and McKibben ring actuators. The wrist component was designed with an adjustable strap buckle while the finger insertion part utilized the elasticity of McKibben ring actuator during contraction to fit a wide range of sizes. The size range for wrist and hand circumference is 12 cm - 21.6 cm and 15.8 cm - 22.3 cm respectively, which fit 90 % of Malaysian young adults. The soft splint was tested on two healthy subjects. At 400 kPa supply pressure, the bending angle of the finger joints achieved was [71.8°, 72.8°, 18.70] for Metacarpophalangeal, Proximal Interphalangeal and Distal Interphalangeal respectively. The range of motion achieved by the soft splint is lower than the functional range of motion, but higher compared to other research works. The subjects were able to grasp and lift objects of different shapes including a box, cylinder, and irregular shape under 250 g while wearing the soft splint. The developed soft splint with adjustable McKibben ring actuators and pulley-based McKibben linear actuator could initiate finger motion and assist object grasping for a possible clinical hand rehabilitation assessment

    Development of intelligent McKibben actuator with built-in soft conductive rubber sensor

    Get PDF
    This study aims at the development of an intelligent McKibben actuator, in which a soft rubber displacement sensor is integrated. Recently, the McKibben actuator has attracted engineers because of light weight, high output power and high compliance. But in the case of using it for servo control at present, the systems need encoders or potentiometers, therefore the systems tend to grow in size and take away from compliance which is an important advantage for a safe and secure mechanism. We have developed a soft displacement sensor and incorporated it in a McKibben actuator, named it the intelligent McKibben actuator, and proved its potential.</p

    Feasibility Study of a Passive Pneumatic Exoskeleton for Upper Limbs Based on a McKibben Artificial Muscle

    Get PDF
    Exoskeletons are wearable structures or systems designed to enhance human movement and to improve the wearer’s strength or agility, providing auxiliary support aimed at reducing efforts on muscles and joints of the human body. The aim of this work is to discuss on the feasibility of a new passive upper limb exoskeleton, based on the use of pneumatic artificial muscles, and characterized by extreme lightness, cheapness, and ease of use. A broad overview of the state of the art on current exoskeletons is introduced. Then the concept of the new device is presented, and different transmission architectures between pneumatic muscle and limb are discussed. The study demonstrates the potential effectiveness of such a device for supporting an operator in heavy work condition

    Development of a functional hand orthosis for boys with Duchenne muscular dystrophy

    Get PDF

    Novel soft bending actuator based power augmentation hand exoskeleton controlled by human intention

    Get PDF
    This article presents the development of a soft material power augmentation wearable robot using novel bending soft artificial muscles. This soft exoskeleton was developed as a human hand power augmentation system for healthy or partially hand disabled individuals. The proposed prototype serves healthy manual workers by decreasing the muscular effort needed for grasping objects. Furthermore, it is a power augmentation wearable robot for partially hand disabled or post-stroke patients, supporting and augmenting the fingers’ grasping force with minimum muscular effort in most everyday activities. This wearable robot can fit any adult hand size without the need for any mechanical system changes or calibration. Novel bending soft actuators are developed to actuate this power augmentation device. The performance of these actuators has been experimentally assessed. A geometrical kinematic analysis and mathematical output force model have been developed for the novel actuators. The performance of this mathematical model has been proven experimentally with promising results. The control system of this exoskeleton is created by hybridization between cascaded position and force closed loop intelligent controllers. The cascaded position controller is designed for the bending actuators to follow the fingers in their bending movements. The force controller is developed to control the grasping force augmentation. The operation of the control system with the exoskeleton has been experimentally validated. EMG signals were monitored during the experiments to determine that the proposed exoskeleton system decreased the muscular efforts of the wearer

    Robotic Exoskeletons for Upper Extremity Rehabilitation

    Get PDF

    Miniature Pneumatic Curling Rubber Actuator Generating Bidirectional Motion with One Air-Supply Tube

    Get PDF
    Soft actuators driven by pneumatic pressure are promising actuators for mechanical systems in medical, biological, agriculture, welfare fields and so on, because they can ensure high safety for fragile objects from their low mechanical impedance. In this study, a new rubber pneumatic actuator made from silicone rubber was developed. Composed of one chamber and one air-supply tube, it can generate curling motion in two directions by using positive and negative pneumatic pressure. The rubber actuator, for generating bidirectional motion, was designed to achieve an efficient shape by nonlinear finite element method analysis, and was fabricated by a molding and rubber bonding process using excimer light. The fabricated actuator was able to generate curling motion in two directions successfully. The displacement and force characteristics of the actuator were measured by using a motion capture system and a load cell. As an example application of the actuator, a robotic soft hand with three actuators was constructed and its effectiveness was confirmed by experiments
    • …
    corecore