1,023 research outputs found

    Millimeter-wave Wireless LAN and its Extension toward 5G Heterogeneous Networks

    Full text link
    Millimeter-wave (mmw) frequency bands, especially 60 GHz unlicensed band, are considered as a promising solution for gigabit short range wireless communication systems. IEEE standard 802.11ad, also known as WiGig, is standardized for the usage of the 60 GHz unlicensed band for wireless local area networks (WLANs). By using this mmw WLAN, multi-Gbps rate can be achieved to support bandwidth-intensive multimedia applications. Exhaustive search along with beamforming (BF) is usually used to overcome 60 GHz channel propagation loss and accomplish data transmissions in such mmw WLANs. Because of its short range transmission with a high susceptibility to path blocking, multiple number of mmw access points (APs) should be used to fully cover a typical target environment for future high capacity multi-Gbps WLANs. Therefore, coordination among mmw APs is highly needed to overcome packet collisions resulting from un-coordinated exhaustive search BF and to increase the total capacity of mmw WLANs. In this paper, we firstly give the current status of mmw WLANs with our developed WiGig AP prototype. Then, we highlight the great need for coordinated transmissions among mmw APs as a key enabler for future high capacity mmw WLANs. Two different types of coordinated mmw WLAN architecture are introduced. One is the distributed antenna type architecture to realize centralized coordination, while the other is an autonomous coordination with the assistance of legacy Wi-Fi signaling. Moreover, two heterogeneous network (HetNet) architectures are also introduced to efficiently extend the coordinated mmw WLANs to be used for future 5th Generation (5G) cellular networks.Comment: 18 pages, 24 figures, accepted, invited paper

    A Review of Interference Reduction in Wireless Networks Using Graph Coloring Methods

    Full text link
    The interference imposes a significant negative impact on the performance of wireless networks. With the continuous deployment of larger and more sophisticated wireless networks, reducing interference in such networks is quickly being focused upon as a problem in today's world. In this paper we analyze the interference reduction problem from a graph theoretical viewpoint. A graph coloring methods are exploited to model the interference reduction problem. However, additional constraints to graph coloring scenarios that account for various networking conditions result in additional complexity to standard graph coloring. This paper reviews a variety of algorithmic solutions for specific network topologies.Comment: 10 pages, 5 figure

    An agent based architecture for cognitive spectrum management

    Full text link
    In the recent years, wireless technologies and devices have progressed dramatically that has augmented the demand for electromagnetic spectrum. Some research work showed that spectrum access and provision to user is not possible due to shortage of spectrum but federal communication commission refused to accept this theory and indicated that the spectrum is available since most of the frequency bands are underutilized. In order to allow the use of these frequency bands without interference, cognitive radio was proposed that characterizes the growing intelligence of radio systems can adapt to the radio environment, allowing opportunistic usage and sharing with the existing uses of spectrum. To take this concept a step further, we propose to use intelligent agent for spectrum management in the context of cognitive radio in this paper. In our proposed architecture, agents are embedded in the radio devices that coordinate their operations to benefit from network and avoid interference with the primary user. Agents carry a set of modules to gather information about the terminal status and the radio environment and act accordingly to the constraints of the user application

    Learning-Based Constraint Satisfaction With Sensing Restrictions

    Get PDF
    In this paper we consider graph-coloring problems, an important subset of general constraint satisfaction problems that arise in wireless resource allocation. We constructively establish the existence of fully decentralized learning-based algorithms that are able to find a proper coloring even in the presence of strong sensing restrictions, in particular sensing asymmetry of the type encountered when hidden terminals are present. Our main analytic contribution is to establish sufficient conditions on the sensing behaviour to ensure that the solvers find satisfying assignments with probability one. These conditions take the form of connectivity requirements on the induced sensing graph. These requirements are mild, and we demonstrate that they are commonly satisfied in wireless allocation tasks. We argue that our results are of considerable practical importance in view of the prevalence of both communication and sensing restrictions in wireless resource allocation problems. The class of algorithms analysed here requires no message-passing whatsoever between wireless devices, and we show that they continue to perform well even when devices are only able to carry out constrained sensing of the surrounding radio environment

    WiFi Assisted Multi-WiGig AP Coordination for Future Multi-Gbps WLANs

    Full text link
    Wireless Gigabit (WiGig) access points (APs) using 60 GHz unlicensed frequency band are considered as key enablers for future Gbps wireless local area networks (WLANs). Exhaustive search analog beamforming (BF) is mainly used with WiGig transmissions to overcome channel propagation loss and accomplish high rate data transmissions. Due to its short range transmission with high susceptibility to path blocking, a multiple number of WiGig APs should be installed to fully cover a typical target environment. Therefore, coordination among the installed APs is highly needed for enabling WiGig concurrent transmissions while overcoming packet collisions and reducing interference, which highly increases the total throughput of WiGig WLANs. In this paper, we propose a comprehensive architecture for coordinated WiGig WLANs. The proposed WiGig WLAN is based on a tight coordination between the 5 GHz (WiFi) and the 60 GHz (WiGig) unlicensed frequency bands. By which, the wide coverage WiFi band is used to do the signaling required for organizing WiGig concurrent data transmissions using control/user (C/U) plane splitting. To reduce interference to existing WiGig data links while doing BF, a novel location based BF mechanism is also proposed based on WiFi fingerprinting. The proposed coordinated WiGig WLAN highly outperforms conventional un-coordinated one in terms of total throughput, average packet delay and packet dropping rate.Comment: 6 pages, 8 Figures, IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC) 201

    Vehicular Dynamic Spectrum Access: Using Cognitive Radio for Automobile Networks

    Get PDF
    Vehicular Dynamic Spectrum Access (VDSA) combines the advantages of dynamic spectrum access to achieve higher spectrum efficiency and the special mobility pattern of vehicle fleets. This dissertation presents several noval contributions with respect to vehicular communications, especially vehicle-to-vehicle communications. Starting from a system engineering aspect, this dissertation will present several promising future directions for vehicle communications, taking into consideration both the theoretical and practical aspects of wireless communication deployment. This dissertation starts with presenting a feasibility analysis using queueing theory to model and estimate the performance of VDSA within a TV whitespace environment. The analytical tool uses spectrum measurement data and vehicle density to find upper bounds of several performance metrics for a VDSA scenario in TVWS. Then, a framework for optimizing VDSA via artificial intelligence and learning, as well as simulation testbeds that reflect realistic spectrum sharing scenarios between vehicle networks and heterogeneous wireless networks including wireless local area networks and wireless regional area networks. Detailed experimental results justify the testbed for emulating a mobile dynamic spectrum access environment composed of heterogeneous networks with four dimensional mutual interference. Vehicular cooperative communication is the other proposed technique that combines the cooperative communication technology and vehicle platooning, an emerging concept that is expected to both increase highway utilization and enhance both driver experience and safety. This dissertation will focus on the coexistence of multiple vehicle groups in shared spectrum, where intra-group cooperation and inter-group competition are investigated in the aspect of channel access. Finally, a testbed implementation VDSA is presented and a few applications are developed within a VDSA environment, demonstrating the feasibility and benefits of some features in a future transportation system

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference
    • …
    corecore