134 research outputs found

    A Review of Wearable Sensor Systems to Monitor Plantar Loading in the Assessment of Diabetic Foot Ulcers

    Get PDF
    Diabetes is highly prevalent throughout the world and imposes a high economic cost on countries at all income levels. Foot ulceration is one devastating consequence of diabetes, which can lead to amputation and mortality. Clinical assessment of diabetic foot ulcer (DFU) is currently subjective and limited, impeding effective diagnosis, treatment and prevention. Studies have shown that pressure and shear stress at the plantar surface of the foot plays an important role in the development of DFUs. Quantification of these could provide an improved means of assessment of the risk of developing DFUs. However, commercially-available sensing technology can only measure plantar pressures, neglecting shear stresses and thus limiting their clinical utility. Research into new sensor systems which can measure both plantar pressure and shear stresses are thus critical. Our aim in this paper is to provide the reader with an overview of recent advances in plantar pressure and stress sensing and offer insights into future needs in this critical area of healthcare. Firstly, we use current clinical understanding as the basis to define requirements for wearable sensor systems capable of assessing DFU. Secondly, we review the fundamental sensing technologies employed in this field and investigate the capabilities of the resultant wearable systems, including both commercial and research-grade equipment. Finally, we discuss research trends, ongoing challenges and future opportunities for improved sensing technologies to monitor plantar loading in the diabetic foot

    Wearable sensors for respiration monitoring: a review

    Get PDF
    This paper provides an overview of flexible and wearable respiration sensors with emphasis on their significance in healthcare applications. The paper classifies these sensors based on their operating frequency distinguishing between high-frequency sensors, which operate above 10 MHz, and low-frequency sensors, which operate below this level. The operating principles of breathing sensors as well as the materials and fabrication techniques employed in their design are addressed. The existing research highlights the need for robust and flexible materials to enable the development of reliable and comfortable sensors. Finally, the paper presents potential research directions and proposes research challenges in the field of flexible and wearable respiration sensors. By identifying emerging trends and gaps in knowledge, this review can encourage further advancements and innovation in the rapidly evolving domain of flexible and wearable sensors.This work was supported by the Spanish Government (MICINN) under Projects TED2021-131209B-I00 and PID2021-124288OB-I00.Peer ReviewedPostprint (published version

    Smart Devices and Systems for Wearable Applications

    Get PDF
    Wearable technologies need a smooth and unobtrusive integration of electronics and smart materials into textiles. The integration of sensors, actuators and computing technologies able to sense, react and adapt to external stimuli, is the expression of a new generation of wearable devices. The vision of wearable computing describes a system made by embedded, low power and wireless electronics coupled with smart and reliable sensors - as an integrated part of textile structure or directly in contact with the human body. Therefore, such system must maintain its sensing capabilities under the demand of normal clothing or textile substrate, which can impose severe mechanical deformation to the underlying garment/substrate. The objective of this thesis is to introduce a novel technological contribution for the next generation of wearable devices adopting a multidisciplinary approach in which knowledge of circuit design with Ultra-Wide Band and Bluetooth Low Energy technology, realization of smart piezoresistive / piezocapacitive and electro-active material, electro-mechanical characterization, design of read-out circuits and system integration find a fundamental and necessary synergy. The context and the results presented in this thesis follow an “applications driven” method in terms of wearable technology. A proof of concept has been designed and developed for each addressed issue. The solutions proposed are aimed to demonstrate the integration of a touch/pressure sensor into a fabric for space debris detection (CApture DEorbiting Target project), the effectiveness of the Ultra-Wide Band technology as an ultra-low power data transmission option compared with well known Bluetooth (IR-UWB data transmission project) and to solve issues concerning human proximity estimation (IR-UWB Face-to-Face Interaction and Proximity Sensor), wearable actuator for medical applications (EAPtics project) and aerospace physiology countermeasure (Gravity Loading Countermeasure Skinsuit project)

    Continuous monitoring of vital parameters for clinically valid assessment of human health status

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas) Universidade de Lisboa, Faculdade de Ciências, 2019The lack of devices suitable for acquiring accurate and reliable measures of patients' physiolog-ical signals in a remote and continuous manner together with the advances in data acquisition technol-ogies during the last decades, have led to the emergence of wearable devices for healthcare. Wearable devices enable remote, continuous and long-term health monitoring in unattended setting. In this con-text, the Swiss Federal Laboratories for Material Science and Technology (Empa) developed a wearable system for long-term electrocardiogram measurements, referred to as textile belt. It consists of a chest strap with two embroidered textile electrodes. The validity of Empa’s system for electrocardiogram monitoring has been proven in a clinical setting. This work aimed to assess the validity of the textile belt for electrocardiogram monitoring in a home setting and to supplement the existing system with sensors for respiratory monitoring. Another objective was to evaluate the suitability of the same weara-ble, as a multi-sensor system, for activity monitoring. A study involving 12 patients (10 males and 2 females, interquartile range for age of 48–59 years and for body mass indexes of 28.0–35.5 kg.m-2) with suspected sleep apnoea was carried out. Overnight electrocardiogram was measured in a total of 28 nights. The quality of recorded signals was assessed using signal-to-noise ratio, artefacts detection and Poincaré plots. Study data were compared to data from the same subjects, acquired in the clinical setting. For respiratory monitoring, optical fibre-based sensors of different geometries were integrated into the textile belt. Signal processing algorithms for breathing rate and tidal volume estimation based on respiratory signals acquired by the sensors were developed. Pilot studies were conducted to compare the different approaches for respiratory monitoring. The quality of respiratory signals was determined based on signal segments “sinusoidality”, evaluated through the calculation of the cross-correlation between signal segments and segment-specific reference waves. A method for accelerometry-based lying position recognition was proposed, and the proof of concept of activity intensity classification through the combination of subjects’ inertial acceleration, heart rate and breathing rate data, was presented. Finally, a study with three participants (1 male and 2 females, aged 21 ± 2 years, body mass index of 20.3 ± 1.5 kg.m-2) was conducted to assess the validity of the textile belt for respiratory and activity monitoring. Electrocardiogram signals acquired by the textile belt in the home setting were found to have better quality than the data acquired by the same device in the clinical setting. Although a higher artefact percentage was found for the textile belt, signal-to-noise ratio of electrocardiogram signals recorded by the textile belt in the home setting was similar to that of signals acquired by the gel electrodes in the clinical setting. A good agreement was found between the RR-intervals derived from signals recorded in home and clinical settings. Besides, for artefact percentages greater than 3%, visual assessment of Poincaré plots proved to be effective for the determination of the primary source of artefacts (noise or ectopic beats). Acceleration data allowed posture recognition (i.e. lying or standing/sitting, lying position) with an accuracy of 91% and positive predictive value of 80%. Lastly, preliminary results of physical activity intensity classification yielded high accuracy, showing the potential of the proposed method. The textile belt proved to be appropriate for long-term, remote and continuous monitoring of subjects’ physical and physiological parameters. It can monitor not only electrocardiogram, but also breathing rate, body posture and physical activity intensity, having the potential to be used as tool for disease prediction and diagnose support.Contexto: A falta de dispositivos adequados para a monitorização de sinais fisiológicos de um modo remoto e contínuo, juntamente com avanços tecnológicos na área de aquisição de dados nas últimas décadas, levaram ao surgimento de wearable devices, i.e. dispositivos vestíveis, no sector da saúde. Wearable devices possibilitam a monitorização do estado de saúde, de uma forma remota, contínua e de longa duração. Quando feito em ambiente domiciliar, este tipo de monitorização (i.e. contínua, remota e de longa duração) tem várias vantagens: diminui a pressão posta sobre o sistema de saúde, reduz despesas associadas ao internamento e acelera a resposta a emergências, permitindo deteção precoce e prevenção de condições crónicas. Neste contexto, a Empa, Laboratórios Federais Suíços de Ciência e Tecnologia de Materiais, desenvolveu um sistema vestível para a monitorização de eletrocardiograma de longa duração. Este sistema consiste num cinto peitoral com dois elétrodos têxteis integrados. Os elétrodos têxteis são feitos de fio de polietileno tereftalato revestido com prata e uma ultrafina camada de titânio no topo. De modo a garantir a aquisição de sinais de alta qualidade, o cinto tem nele integrado um reservatório de água que liberta vapor de água para humidificar os elétrodos. Este reservatório per-mite a monitorização contínua de eletrocardiograma por 5 a 10 dias, sem necessitar de recarga. A vali-dade do cinto para a monitorização de eletrocardiograma em ambiente clínico já foi provada. Objetivo: Este trabalho teve por objetivo avaliar a validade do cinto para a monitorização de eletrocar-diograma em ambiente domiciliar e complementar o sistema existente com sensores para monitorização respiratória. Um outro objetivo foi analisar a adequação do cinto, como um sistema multisensor, para monitorização da atividade física. Métodos: Um estudo com 12 pacientes com suspeita de apneia do sono (10 homens e 2 mulheres, am-plitude interquartil de 48–59 anos para a idade e de 28.0–35.5 kg.m-2 para o índice de massa corporal) foi conduzido para avaliar a qualidade do sinal de eletrocardiograma medido em ambiente domiciliar. O sinal de eletrocardiograma dos pacientes foi monitorizado continuamente, num total de 28 noites. A qualidade dos sinais adquiridos foi analisada através do cálculo da razão sinal-ruído; da deteção de ar-tefactos, i.e., intervalos RR com um valor inviável de um ponto de vista fisiológico; e de gráficos de Poincaré, um método de análise não linear da distribuição dos intervalos RR registados. Os dados ad-quiridos neste estudo foram comparados com dados dos mesmos pacientes, adquiridos em ambiente hospitalar. Para a monitorização respiratória, sensores feitos de fibra óptica foram integrados no cinto. Al-gorítmicos para a estimar a frequência respiratória e o volume corrente dos sujeitos tendo por base o sinal medido pelas fibras ópticas foram desenvolvidos neste trabalho. As diferentes abordagens foram comparadas através de estudos piloto. Diferentes métodos para avaliação da qualidade do sinal adquirido foram sugeridos. Um método de reconhecimento da postura corporal através do cálculo de ângulos de orientação com base na aceleração medida foi proposto. A prova de conceito da determinação da intensidade da atividade física pela combinação de informações relativas á aceleração inercial e frequências cardíaca e respiratória dos sujeitos, é também apresentada neste trabalho. Um estudo foi conduzido para avaliar a validade do cinto para monitorização da respiração e da atividade física. O estudo contou com 10 parti-cipantes, dos quais 3 vestiram o cinto para monitorização da respiração (1 homem e 2 mulheres, idade 21 ± 2 anos, índice de massa corporal 20.3 ± 1.5 kg.m-2). Resultados: O estudo feito com pacientes com suspeita de apneia do sono revelou que os sinais eletro-cardiográficos adquiridos pelo cinto em ambiente domiciliar foram de melhor qualidade que os sinais adquiridos pelo mesmo dispositivo em ambiente hospitalar. Uma percentagem de artefacto de 2.87% ±4.14% foi observada para os dados adquiridos pelos elétrodos comummente usados em ambiente hospi-talar, 7.49% ± 10.76% para os dados adquiridos pelo cinto em ambiente domiciliar e 9.66% ± 14.65% para os dados adquiridos pelo cinto em ambiente hospitalar. Embora tenham tido uma maior percenta-gem de artefacto, a razão sinal-ruído dos sinais eletrocardiográficos adquiridos pelo cinto em ambiente domiciliar foi semelhante á dos sinais adquiridos pelos elétrodos de gel em ambiente hospitalar. Resul-tados sugerem uma boa concordância entre os intervalos RR calculados com base nos eletrocardiogra-mas registados em ambientes hospitalar e domiciliar. Além disso, para sinais com percentagem de arte-facto superior a 3%, a avaliação visual dos gráficos de Poincaré provou ser um bom método para a determinação da fonte primária de artefactos (batimentos irregulares ou ruído). A monitorização da aceleração dos sujeitos permitiu o reconhecimento da postura corporal (isto é, deitado ou sentado/em pé) com uma exatidão de 91% e valor preditivo positivo de 80%. Por fim, a classificação da intensidade da atividade física baseado na aceleração inercial e frequências cardíaca e respiratória revelou elevada exatidão, mostrando o potencial desta técnica. Conclusão: O cinto desenvolvido pela Empa provou ser apropriado para monitorização de longa-dura-ção de variáveis físicas e fisiológicos, de uma forma remota e contínua. O cinto permite não só monito-rizar eletrocardiograma, mas também frequência respiratória, postura corporal e intensidade da atividade física. Outros estudos devem ser conduzidos para corroborar os resultados e conclusões deste trabalho. Outros sensores poderão ser integrados no cinto de modo a possibilitar a monitorização de outras vari-áveis fisiológicas de relevância clínica. Este sistema tem o potencial de ser usado como uma ferramenta para predição de doenças e apoio ao diagnóstico

    Smart Shoe Insole Based on Polydimethylsiloxane Composite Capacitive Sensors

    Get PDF
    Nowadays, the study of the gait by analyzing the distribution of plantar pressure is a well-established technique. The use of intelligent insoles allows real-time monitoring of the user. Thus, collecting and analyzing information is a more accurate process than consultations in so-called gait laboratories. Most of the previous published studies consider the composition and operation of these insoles based on resistive sensors. However, the use of capacitive sensors could provide better results, in terms of linear behavior under the pressure exerted. This behavior depends on the properties of the dielectric used. In this work, the design and implementation of an intelligent plantar insole composed of capacitive sensors is proposed. The dielectric used is a polydimethylsiloxane (PDMS)-based composition. The sensorized plantar insole developed achieves its purpose as a tool for collecting pressure in different areas of the sole of the foot. The fundamentals and details of the composition, manufacture, and implementation of the insole and the system used to collect data, as well as the data samples, are shown. Finally, a comparison of the behavior of both insoles, resistive and capacitive sensor-equipped, is made. The prototype presented lays the foundation for the development of a tool to support the diagnosis of gait abnormalities.22 página

    A survey on wireless body area networks for eHealthcare systems in residential environments

    Get PDF
    The progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to the base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments

    Development of carbon ink for wearable sensors

    Get PDF

    Extending the Design Space of E-textile Assistive Smart Environment Applications

    Get PDF
    The thriving field of Smart Environments has allowed computing devices to gain new capabilities and develop new interfaces, thus becoming more and more part of our lives. In many of these areas it is unthinkable to renounce to the assisting functionality such as e.g. comfort and safety functions during driving, safety functionality while working in an industrial plant, or self-optimization of daily activities with a Smartwatch. Adults spend a lot of time on flexible surfaces such as in the office chair, in bed or in the car seat. These are crucial parts of our environments. Even though environments have become smarter with integrated computing gaining new capabilities and new interfaces, mostly rigid surfaces and objects have become smarter. In this thesis, I build on the advantages flexible and bendable surfaces have to offer and look into the creation process of assistive Smart Environment applications leveraging these surfaces. I have done this with three main contributions. First, since most Smart Environment applications are built-in into rigid surfaces, I extend the body of knowledge by designing new assistive applications integrated in flexible surfaces such as comfortable chairs, beds, or any type of soft, flexible objects. These developed applications offer assistance e.g. through preventive functionality such as decubitus ulcer prevention while lying in bed, back pain prevention while sitting on a chair or emotion detection while detecting movements on a couch. Second, I propose a new framework for the design process of flexible surface prototypes and its challenges of creating hardware prototypes in multiple iterations, using resources such as work time and material costs. I address this research challenge by creating a simulation framework which can be used to design applications with changing surface shape. In a first step I validate the simulation framework by building a real prototype and a simulated prototype and compare the results in terms of sensor amount and sensor placement. Furthermore, I use this developed simulation framework to analyse the influence it has on an application design if the developer is experienced or not. Finally, since sensor capabilities play a major role during the design process, and humans come often in contact with surfaces made of fabric, I combine the integration advantages of fabric and those of capacitive proximity sensing electrodes. By conducting a multitude of capacitive proximity sensing measurements, I determine the performance of electrodes made by varying properties such as material, shape, size, pattern density, stitching type, or supporting fabric. I discuss the results from this performance evaluation and condense them into e-textile capacitive sensing electrode guidelines, applied exemplary on the use case of creating a bed sheet for breathing rate detection

    Augmented reality system with application in physical rehabilitation

    Get PDF
    The aging phenomenon causes increased physiotherapy services requirements, with increased costs associated with long rehabilitation periods. Traditional rehabilitation methods rely on the subjective assessment of physiotherapists without supported training data. To overcome the shortcoming of traditional rehabilitation method and improve the efficiency of rehabilitation, AR (Augmented Reality) which represents a promissory technology that provides an immersive interaction with real and virtual objects is used. The AR devices may assure the capture body posture and scan the real environment that conducted to a growing number of AR applications focused on physical rehabilitation. In this MSc thesis, an AR platform used to materialize a physical rehabilitation plan for stroke patients is presented. Gait training is a significant part of physical rehabilitation for stroke patients. AR represents a promissory solution for training assessment providing information to the patients and physiotherapists about exercises to be done and the reached results. As part of MSc work an iOS application was developed in unity 3D platform. This application immersing patients in a mixed environment that combine real-world and virtual objects. The human computer interface is materialized by an iPhone as head-mounted 3D display and a set of wireless sensors for physiological and motion parameters measurement. The position and velocity of the patient are recorded by a smart carpet that includes capacitive sensors connected to a computation unit characterized by Wi-Fi communication capabilities. AR training scenario and the corresponding experimental results are part of the thesis.O envelhecimento causa um aumento das necessidades dos serviços de fisioterapia, com aumento dos custos associados a longos períodos de reabilitação. Os métodos tradicionais de reabilitação dependem da avaliação subjetiva de fisioterapeutas sem registo automatizado de dados de treino. Com o principal objetivo de superar os problemas do método tradicional e melhorar a eficiência da reabilitação, é utilizada a RA (Realidade Aumentada), que representa uma tecnologia promissora, que fornece uma interação imersiva com objetos reais e virtuais. Os dispositivos de RA são capazes de garantir uma postura correta do corpo de capturar e verificar o ambiente real, o que levou a um número crescente de aplicações de RA focados na reabilitação física. Neste projeto, é apresentada uma plataforma de RA, utilizada para materializar um plano de reabilitação física para pacientes que sofreram AVC. O treino de marcha é uma parte significativa da reabilitação física para pacientes com AVC. A RA apresenta-se como uma solução promissora para a avaliação do treino, fornecendo informações aos pacientes e aos profissionais de fisioterapia sobre os exercícios a serem realizados e os resultados alcançados. Como parte deste projeto, uma aplicação iOS foi desenvolvida na plataforma Unity 3D. Esta aplicação fornece aos pacientes um ambiente imersivo que combina objetos reais e virtuais. A interface de RA é materializada por um iPhone montado num suporte de cabeça do utilizador, assim como um conjunto de sensores sem fios para medição de parâmetros fisiológicos e de movimento. A posição e a velocidade do paciente são registadas por um tapete inteligente que inclui sensores capacitivos conectados a uma unidade de computação, caracterizada por comunicação via Wi-Fi. O cenário de treino em RA e os resultados experimentais correspondentes fazem parte desta dissertação

    User-interactive wirelessly-communicating “smart” textiles made from multimaterial fibers

    Get PDF
    En raison de la nature intime des interactions homme-textiles (essentiellement, nous sommes entourés par les textiles 24/7 - soit sous la forme de vêtements que nous portons ou comme rembourrage dans nos voitures, maisons, bureaux, etc.), les textiles intelligents sont devenus des plates-formes de plus en plus attrayantes pour les réseaux de capteurs innovants biomédicaux, transducteurs, et des microprocesseurs dédiés à la surveillance continue de la santé. En même temps, l'approche commune dans le domaine des textiles intelligents consiste en l'adaptation de la microélectronique planaire classique à une sorte de substrat souple. Cela se traduit souvent par de mauvaises propriétés mécaniques et donc des compromis au niveau du confort et de l'acceptation des usagers, qui à leur tour peuvent probablement expliquer pourquoi ces solutions émergent rarement du laboratoire et, à l'exception de certains cas très spécifiques, ne soit pas utilisés dans la vie de tous les jours. Par ailleurs, nous assistons présentement à un changement de paradigme au niveau de l'informatique autonome classique vers le concept de calculs distribués (ou informatique en nuage). Dans ce cas, la puissance de calcul du nœud individuel ou d'un dispositif de textile intelligent est moins importante que la capacité de transmettre des données à l'Internet. Dans ce travail, je propose une nouvelle approche basée sur l'intégration de polymère, verre et métal dans des structures de fibres miniaturisées afin de réaliser des dispositifs de textiles intelligents de prochaine génération avec des fonctionnalités de niveau supérieur (comme la communication sans fil, la reconnaissance tactile, les interconnexions électriques) tout en ayant une forme minimalement envahissante. Tout d'abord, j'étudie différents modèles d'antennes compatibles avec la géométrie des fibres et des techniques de fabrication. Ensuite, je démontre expérimentalement que ces antennes en fibres multi-matériaux peuvent être intégrées dans les textiles lors d’un processus standard de fabrication de textiles. Les tests effectués sur ces textiles ont montré que, pour les scénarios «sur-corps et hors-corps», les propriétés émissives en termes de perte de retour (S11), le patron (diagramme) de radiation, l'efficacité (gain), et le taux d'erreur binaire (TEB) sont directement comparables à des solutions classiques rigides. Ces antennes sont adéquates pour les communications à courte portée des applications de communications sans fil ayant un débit de données de Mo/s (méga-octets par seconde) (via protocoles Bluetooth et IEEE 802.15.4 à la fréquence de 2,4 GHz). Des simulations numériques de taux d'absorption spécifique démontrent également le plein respect des règles de sécurité imposées par Industrie Canada pour les réseaux sans fil à proximité du corps humain. Puisque les matériaux composites de fibres métal-verre-polymère sont fabriqués en utilisant des fibres de silice creuses de diamètre submillimétrique et la technique de dépôt d'argent à l'état liquide, les éléments conducteurs sont protégés de l'environnement et ceci préserve aussi les propriétés mécaniques et esthétiques des vêtements. Cet aspect est confirmé par des essais correspondant aux normes de l'industrie du textile, l'étirement standard et des essais de flexion. De plus, appliquer des revêtements superhydrophobes (WCA = 152º, SA = 6º) permet une communication sans fil sans interruption de ces textiles sous l'application directe de l'eau, même après plusieurs cycles de lavage. Enfin, le prototype de textile intelligent fabriqué interagit avec l'utilisateur à travers un détecteur tactile et transmet les données tactiles à travers le protocole Bluetooth à un smartphone. Cette démonstration valide l’approche des fibres multi-matériaux pour une variété d'applications.As we are surrounded by textiles 24/7, either in the form of garments that we wear or as upholstery in our cars, homes, offices, etc., textiles are especially attractive platforms for arrays of innovative biomedical sensors, transducers, and microprocessors dedicated, among other applications, to continuous health monitoring. In the same time, the common approach in the field of smart textiles consists in adaptation of conventional planar microelectronics to some kind of flexible substrate, which often results in poor mechanical properties and thus compromises wearing comfort and complicates garment care, which results in low user acceptance. This explains why such solutions rarely emerge from the lab and, with the exception of some very specific cases, cannot be seen in the everyday life. Furthermore, we are currently witnessing a global shift from classical standalone computing to the concept of distributed computation (e.g. so-called thin clients and cloud storage). In this context, the computation power of the individual node or smart textile device in this case, becomes progressively less important than the ability to relay data to the Internet. In this work, I propose a novel approach based on the idea of integration of polymer, glass and metal into miniaturized fiber structures in order to achieve next-generation smart textile devices with higher-level functionalities, such as wireless communication, touch recognition, electrical interconnects, with minimally-invasive attributes. First, I investigate different possible fiber-shaped antenna designs and fabrication techniques. Next, I experimentally demonstrate that such multi-material fiber antennas can be integrated into textiles during standard textile manufacturing process. Tests conducted on these textiles have shown that, for on-body and off-body scenarios, the emissive properties in terms of return loss (S11), radiation pattern, efficiency (gain), and bit-error rate (BER) are directly comparable to classic ‘rigid’ solutions and adequately address short-range wireless communications applications at Mbps data-rates (via Bluetooth and IEEE 802.15.4 protocols at 2.4 GHz frequency). Numerical simulations of the specific absorption rate (SAR) also demonstrate full compliance with safety regulations imposed by Industry Canada for wireless body area network devices. Since metal-glass-polymer fiber composites were fabricated using sub-millimetre hollow-core silica fibers and liquid state silver deposition technique, the conductor elements are shielded against the environment and preserve the mechanical and cosmetic properties of the garments. This is confirmed by the textile industry standard stretching and bending tests. Additionally, applied superhydrophobic coatings (WCA=152º, SA=6º) allow uninterrupted wireless communication of the textiles under direct water application even after multiple washing cycles. Finally, I fabricated a user-interactive and wireless-communicating smart textile prototype, that interacts with the user through capacitive touch-sensing and relays the touch data through Bluetooth protocol to a smartphone. This demonstration validates that the proposed approach based on multi-material fibers is suitable for applications to sensor fabrics and bio-sensing textiles connected in real time to mobile communications infrastructures, suitable for a variety of health and life science applications
    corecore