1,694 research outputs found

    Mesoscopic modeling of heterogeneous boundary conditions for microchannel flows

    Get PDF
    We present a mesoscopic model of the fluid-wall interactions for flows in microchannel geometries. We define a suitable implementation of the boundary conditions for a discrete version of the Boltzmann equations describing a wall-bounded single phase fluid. We distinguish different slippage properties on the surface by introducing a slip function, defining the local degree of slip for mesoscopic molecules at the boundaries. The slip function plays the role of a renormalizing factor which incorporates, with some degree of arbitrariness, the microscopic effects on the mesoscopic description. We discuss the mesoscopic slip properties in terms of slip length, slip velocity, pressure drop reduction (drag reduction), and mass flow rate in microchannels as a function of the degree of slippage and of its spatial distribution and localization, the latter parameter mimicking the degree of roughness of the ultra-hydrophobic material in real experiments. We also discuss the increment of the slip length in the transition regime, i.e. at O(1) Knudsen numbers. Finally, we compare our results with Molecular Dynamics investigations of the dependency of the slip length on the mean channel pressure and local slip properties (Cottin-Bizonne et al. 2004) and with the experimental dependency of the pressure drop reduction on the percentage of hydrophobic material deposited on the surface -- Ou et al. (2004).Comment: 21 pages, 10 figure

    A note on the stability of slip channel flows

    Full text link
    We consider the influence of slip boundary conditions on the modal and non-modal stability of pressure-driven channel flows. In accordance with previous results by Gersting (1974) (Phys. Fluids, 17) but in contradiction with the recent investigation of Chu (2004) (C.R. Mecanique, 332), we show that slip increases significantly the value of the critical Reynolds number for linear instability. The non-modal stability analysis however reveals that the slip has a very weak influence on the maximum transient energy growth of perturbations at subcritical Reynolds numbers. Slip boundary conditions are therefore not likely to have a significant effect on the transition to turbulence in channel flows

    The Johnson-Segalman model with a diffusion term in Couette flow

    Full text link
    We study the Johnson-Segalman (JS) model as a paradigm for some complex fluids which are observed to phase separate, or ``shear-band'' in flow. We analyze the behavior of this model in cylindrical Couette flow and demonstrate the history dependence inherent in the local JS model. We add a simple gradient term to the stress dynamics and demonstrate how this term breaks the degeneracy of the local model and prescribes a much smaller (discrete, rather than continuous) set of banded steady state solutions. We investigate some of the effects of the curvature of Couette flow on the observable steady state behavior and kinetics, and discuss some of the implications for metastability.Comment: 14 pp, to be published in Journal of Rheolog

    Molecular transport and flow past hard and soft surfaces: Computer simulation of model systems

    Get PDF
    The properties of polymer liquids on hard and soft substrates are investigated by molecular dynamics simulation of a coarse-grained bead-spring model and dynamic single-chain-in-mean-field (SCMF) simulations of a soft, coarse-grained polymer model. Hard, corrugated substrates are modelled by an FCC Lennard-Jones solid while polymer brushes are investigated as a prototypical example of a soft, deformable surface. From the molecular simulation we extract the coarse-grained parameters that characterise the equilibrium and flow properties of the liquid in contact with the substrate: the surface and interface tensions, and the parameters of the hydrodynamic boundary condition. The so-determined parameters enter a continuum description like the Stokes equation or the lubrication approximation.Comment: 41 pages, 13 figure
    corecore