1,588 research outputs found

    Age and sex affect intersubject correlation of EEG throught development

    Full text link
    Recent efforts have aimed to characterize clinical pediatric populations by using neurophysiological tests in addition to behavioral assays. Here we report on a data collection effort in which electroencephalography (EEG) was recorded in both juveniles and adults (N=114 participants, ages 6-44 years of age) during various stimulation protocols. The present analysis focuses on how neural responses during passive viewing of naturalistic videos vary with age and sex, and in particular, how similar they are within developmental groups. Similarity of neural responses was measured as the inter-subject correlation of the EEG. Stimulus-evoked neural responses are more similar among children and decrease in similarity with age. Among children, males respond more similarly to each other than females. This was uniformly true for a variety of videos. The decrease in group similarity with age may result from an overall decline in the magnitude of evoked responses, but this cannot explain the sex differences found in the young. We therefore propose that as children mature, neural function may become more variable

    The brain structure during language development: neural correlates of sentence comprehension in preschool children

    Get PDF
    Language skills increase as the brain matures and language specialization is linked to the left hemisphere. Among distinct language domains, sentence comprehension is particularly vital in language acquisition and, by comparison, requires a much longer time-span before full mastery in children. Although accumulating studies have revealed the neural mechanism underlying sentence comprehension acquisition, the development of the brain’s gray matter and its relation to sentence comprehension had not been fully understood. This thesis employs structural magnetic resonance imaging and diffusion-weighted imaging data to investigate the neural correlates of sentence comprehension in preschoolers both cross-sectionally and longitudinally. The first study examines how cortical thick- ness covariance is relevant for syntax in preschoolers and changes across development. Results suggest that the cortical thickness covariance of brain regions relevant for syntax increases from preschoolers to adults, whilst preschoolers with superior language abilities show a more adult-like covariance pattern. Reconstructing the white matter fiber tract connecting the left inferior frontal and superior temporal cortices using diffusion-weighted imaging data, the second study suggests that the reduced cortical thickness covariance in the left frontotemporal regions is likely due to immature white matter connectivity during preschool. The third study then investigated the cortical thickness asymmetry and its relation to sentence comprehension abilities. Results show that longitudinal cortical thick- ness asymmetry in the inferior frontal cortex was associated with improvements in sentence comprehension, further suggesting the crucial role of the inferior frontal cortex for sentence comprehension acquisition. Taken together, evidence from gray and white matter data provides new insights into the neuroscientific model of language acquisition and the emergence of syntactic processing during language development

    Multimodality evaluation of the pediatric brain: DTI and its competitors

    Get PDF
    The development of the human brain, from the fetal period until childhood, happens in a series of intertwined neurogenetical and histogenetical events that are influenced by environment. Neuronal proliferation and migration, cell aggregation, axonal ingrowth and outgrowth, dendritic arborisation, synaptic pruning and myelinisation contribute to the ‘plasticity of the developing brain'. These events taken together contribute to the establishment of adult-like neuroarchitecture required for normal brain function. With the advances in technology today, mostly due to the development of non-invasive neuroimaging tools, it is possible to analyze these structural events not only in anatomical space but also longitudinally in time. In this review we have highlighted current ‘state of the art' neuroimaging tools. Development of the new MRI acquisition sequences (DTI, CHARMED and phase imaging) provides valuable insight into the changes of the microstructural environment of the cortex and white matter. Development of MRI imaging tools dedicated for analysis of the acquired images (i) TBSS and ROI fiber tractography, (ii) new tissue segmentation techniques and (iii) morphometric analysis of the cortical mantle (cortical thickness and convolutions) allows the researchers to map the longitudinal changes in the macrostructure of the developing brain that go hand-in-hand with the acquisition of cognitive skills during childhood. Finally, the latest and the newest technologies, like connectom analysis and resting state fMRI connectivity analysis, today, for the first time provide the opportunity to study the developing brain through the prism of maturation of the systems and networks beyond individual anatomical areas. Combining these methods in the future and modeling the hierarchical organization of the brain might ultimately help to understand the mechanisms underlying complex brain structure function relationships of normal development and of developmental disorder

    Neural activity patterns between different executive tasks are more similar in adulthood than in adolescence

    Get PDF
    Background: Adolescence is a time of ongoing neural maturation and cognitive development, especially regarding executive functions. In the current study, age-related differences in the neural correlates of different executive functions were tracked by comparing three age groups consisting of adolescents and young adults. Methods: Brain activity was measured with functional magnetic resonance imaging (fMRI) from 167 human participants (13- to 14-year-old middle adolescents, 16- to 17-year-old late adolescents and 20-to 24-year-old young adults; 80 female, 87 male) while they performed attention and working memory tasks. The tasks were designed to tap into four putative sub-processes of executive function: division of attention, inhibition of distractors, working memory, and attention switching. Results: Behaviorally, our results demonstrated superior task performance in older participants across all task types. When brain activity was examined, young adult participants demonstrated a greater degree of overlap between brain regions recruited by the different executive tasks than adolescent participants. Similarly, functional connectivity between frontoparietal cortical regions was less task specific in the young adult participants than in adolescent participants. Conclusions: Together, these results demonstrate that the similarity between different executive processes in terms of both neural recruitment and functional connectivity increases with age from middle adolescence to early adulthood, possibly contributing to age-related behavioral improvements in executive functioning. These developmental changes in brain recruitment may reflect a more homogenous morphological organization between process-specific neural networks, increased reliance on a more domain-general network involved in executive processing, or developmental changes in cognitive strategy.Peer reviewe
    • …
    corecore