21 research outputs found

    Lasers for Satellite Uplinks and Downlinks

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.3390/sci2030071The use of Light Amplification by Stimulated Emission of Radiation (i.e., LASERs or lasers) by the U.S. Department of Defense is not new and includes laser weapons guidance, laser-aided measurements, even lasers as weapons (e.g., Airborne Laser). Lasers in support of telecommunications is also not new. The use of laser light in fiber optics shattered thoughts on communications bandwidth and throughput. Even the use of lasers in space is no longer new. Lasers are being used for satellite-to-satellite crosslinking. Laser communication can transmit orders-of-magnitude more data using orders-of-magnitude less power and can do so with minimal risk of exposure to the sending and receiving terminals. What is new is using lasers as the uplink and downlink between the terrestrial segment and the space segment of satellite systems. More so, the use of lasers to transmit and receive data between moving terrestrial segments (e.g., ships at sea, airplanes in flight) and geosynchronous satellites is burgeoning. This manuscript examines the technological maturation of employing lasers as the signal carrier for satellite communications linking terrestrial and space systems. The purpose of the manuscript is to develop key performance parameters (KPPs) to inform U.S. Department of Defense initial capabilities documents (ICDs) for near-future satellite acquisition and development. By appreciating the history and technological challenges of employing lasers rather than traditional radio frequency sources for satellite uplink and downlink signal carrier, this manuscript recommends ways for the U.S. Department of Defense to employ lasers to transmit and receive high bandwidth, large-throughput data from moving platforms that need to retain low probabilities of detection, intercept, and exploitation (e.g., carrier battle group transiting to a hostile area of operations, unmanned aerial vehicle collecting over adversary areas). The manuscript also intends to identify commercial sector early-adopter fields and those fields likely to adapt to laser employment for transmission and receipt.U.S. Air Forc

    13th Annual Focus on Creative Inquiry Poster Forum Program

    Get PDF
    The Focus on Creative Inquiry (FoCI) Poster Forum is an annual event in which CI teams can present their research and project accomplishments through poster and interactive displays. FoCI is a celebration of student and mentor collaboration and accomplishments! FoCI is a great venue for students to develop and hone their communication skills

    2018 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Twelfth Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1012/thumbnail.jp

    Development of First-Year Engineering Teams\u27 Mathematical Models through Linked Modeling and Simulation Projects

    Get PDF
    The development and use of mathematical models and simulations underlies much of the work of engineers. Mathematical models describe a situation or system through mathematics, quantification, and pattern identification. Simulations enable users to interact with models through manipulation of input variables and visualization of model outputs. Although modeling skills are fundamental, they are rarely explicitly taught in engineering. Model-eliciting activities (MEAs) represent a pedagogical approach used in engineering to teach students mathematical modeling skills through the development of a model to solve an authentic problem. This study is an investigation into the impact of linking a MEA and a simulation-building project on students’ model development. The purpose of this research is to further address the need for developing effective curricula to teach students’ mathematical modeling skills and begin to address the need to teach students about simulations. The data for this study were 122 first-year engineering student teams’ solutions to both a MEA and a subsequent simulation-building project set in the context of a nanotechnology topic, specifically quantum dot solar cells. The teams’ mathematical models submitted at the end of the MEA and the simulation project were analyzed using two frameworks to assess the quality of the mathematical models and the level of simulation completeness. Three teams’ works with the feedback they received were analyzed in a case study. The analysis of the 122 teams’ mathematical models showed that many teams selected particular aspects of their final MEA models for further development in their simulations. Based on the components of the models that were consistent in the MEA and project submissions, teams either improved, did not change, or weakened aspects of their models. Twenty-six teams improved the functionality of their model. Six teams increased the input variable handling of their models. Two teams improved the efficiency of their models; eight teams made their models less efficient through poor programming decisions. Based on an analysis of the 122 teams’ simulations, 62 percent were complete simulations (i.e. backed by a model and front-ended with user-input and output visualization capabilities). The case study enabled a more detailed analysis of how select teams’ mathematical models changed across their submissions and the evidence of potential deeper learning about their models across their submissions. The findings of this study suggest that model development continued through simulation development enables student teams an opportunity to either further improve or explore their models. These sequential projects provide teams with low quality models with more time for development and application within a simulation. They provide teams with high quality models an opportunity to explore ideas beyond the original scope of the MEA
    corecore