4,992 research outputs found

    Asynchronous performance analysis of a single-phase capacitor-start, capacitor-run permanent magnet motor

    Get PDF
    This work presents a detailed analysis of the asynchronous torque components (average cage, magnet braking torque and pulsating) for a single-phase capacitor-start, capacitor-run permanent magnet motor. The computed envelope of pulsating torque superimposed over the average electromagnetic torque leads to an accurate prediction of starting torque. The developed approach is realized by means of a combination of symmetrical components and d-q axes theory and it can be extended for any m-phase AC motor - induction, synchronous reluctance or synchronous permanent magnet. The resultant average electromagnetic torque is determined by superimposing the asynchronous torques and magnet braking torque effects

    Torque behavior of one-phase permanent magnet AC motor

    Get PDF
    This paper presents a detailed comparative study of two starting and running methods for a single-phase permanent magnet synchronous motor, equipped with a squirrel-cage rotor. The analysis of the motor performance is realized for a pulse width modulated (PWM) inverter fed motor and for a capacitor-start, capacitor-run motor. The developed approach may be extended to any 1-phase ac motor—induction, synchronous reluctance or synchronous permanent magnet

    Performance Testing and Analysis of Synchronous Reluctance Motor Utilizing Dual-phase Magnetic Material

    Get PDF
    While interior permanent magnet (1PM) machines have been considered the state-of-the art for traction motors, synchronous reluctance (SynRel) motors with advanced materials can provide a competitive alternative. 1PM machines typically utilize Neodymium 1ron Boron (NdFeB) permanent magnets, which pose an issue in terms of price, sustainability, demagnetization at higher operating temperatures, and uncontrolled generation. On the other hand, SynRel machines do not contain any magnets and are free from these issues. However, the absence of magnets as well the presence of bridges and centerposts limit the flux-weakening capability of a SynRel machine and limit the achievable constant power speed ratio (CPSR) without having to significantly oversize the machine and/or the power converter. 1n this paper, a new material referred to as the dual-phase magnetic material where nonmagnetic regions can be selectively introduced within each lamination will be evaluated for SynRel designs. The dual-phase feature of this material enables non-magnetic bridges and posts, eliminating one of the key limitations of the SynRel designs in terms of torque density and flux-weakening. This paper will present, the design, analysis and test results of an advanced proof-of-concept SynRel design utilizing dual-phase material with traction applications as the ultimate target application

    Line-start permanent-magnet motor single-phase steady-state performance analysis

    Get PDF
    This paper describes an efficient calculating procedure for the steady-state operation of a single-phase line-start capacitor-run permanent-magnet motor. This class of motor is beginning to be applied in hermetic refrigerator compressors as a high-efficiency alternative to either a plain induction motor or a full inverter-fed drive. The calculation relies on a combination of reference-frame transformations including symmetrical components to cope with imbalance, and dq axes to cope with saliency. Computed results are compared with test data. The agreement is generally good, especially in describing the general properties of the motor. However, it is shown that certain important effects are beyond the limit of simple circuit analysis and require a more complex numerical analysis method

    Neural-Network Vector Controller for Permanent-Magnet Synchronous Motor Drives: Simulated and Hardware-Validated Results

    Get PDF
    This paper focuses on current control in a permanentmagnet synchronous motor (PMSM). The paper has two main objectives: The first objective is to develop a neural-network (NN) vector controller to overcome the decoupling inaccuracy problem associated with conventional PI-based vector-control methods. The NN is developed using the full dynamic equation of a PMSM, and trained to implement optimal control based on approximate dynamic programming. The second objective is to evaluate the robust and adaptive performance of the NN controller against that of the conventional standard vector controller under motor parameter variation and dynamic control conditions by (a) simulating the behavior of a PMSM typically used in realistic electric vehicle applications and (b) building an experimental system for hardware validation as well as combined hardware and simulation evaluation. The results demonstrate that the NN controller outperforms conventional vector controllers in both simulation and hardware implementation

    Embedded finite-element solver for computation of brushless permanent-magnet motors

    Get PDF
    This paper describes the theory underlying the formulation of a “minimum set” of finite-element solutions to be used in the design and analysis of saturated brushless permanent-magnet motors. The choice of finite-element solutions is described in terms of key points on the flux–MMF diagram. When the diagram has a regular shape, a huge reduction in finite-element analysis is possible with no loss of accuracy. If the loop is irregular, many more solutions are needed. This paper describes an efficient technique in which a finite-element solver is associated with a classical ddqq-axis circuit model in such a way that the number of finite-element solutions in one electrical half-cycle can be varied between 1 and 360. The finite-element process is used to determine not only the average torque but also the saturated inductances as the rotor rotates

    A general magnetic-energy-based torque estimator: validation via a permanent-magnet motor drive

    Get PDF
    This paper describes the use of the current–flux-linkage (ipsii{-}psi ) diagram to validate the performance of a general magnetic-energy-based torque estimator. An early step in the torque estimation is the use of controller duty cycles to reconstruct the average phase-voltage waveform during each pulsewidth-modulation (PWM) switching period. Samples over the fundamental period are recorded for the estimation of the average torque. The fundamental period may not be an exact multiple of the sample time. For low speed, the reconstructed voltage requires additional compensation for inverter-device losses. Experimental validation of this reconstructed waveform with the actual PWM phase-voltage waveform is impossible due to the fact that one is PWM in nature and the other is the average value during the PWM period. A solution to this is to determine the phase flux-linkage using each waveform and then plot the resultant ipsii{-}psi loops. The torque estimation is based on instantaneous measurements and can therefore be applied to any electrical machine. This paper includes test results for a three-phase interior permanent-magnet brushless ac motor operating with both sinusoidal and nonsinusoidal current waveforms

    High speed operation design considerations for fractional slot axial flux PMSM

    Get PDF
    This paper discusses intensively the design considerations for the fractional slot axial flux permanent magnet synchronous (AFPMSMs) in order to work efficiently in the constant power speed range, also known as the field weakening (FW) region. The dominant parameter in the constant power speed region is called the characteristic current which equals the ratio of the magnet flux linkage over the synchronous inductance (− ψm/Ls). Several machine parameters is affecting the characteristic current including the machine geometry and the winding configurations. In this paper, the effect of many of these parameters on the FW has been discussed; including the outer diameter, inner to outer diameter ratio, magnet size, slot opening width, slots per poles combinations,and the multi phase configurations for the Axial flux permanent magnet synchronous machine (PMSM). Two main governors are considered to evaluate the parameters’ impact on the machine overall performance; the rated machine efficiency and the torque to weight ratio at the highest values. Selection of these governors is application driven where these governors are the most influencing factors on the axial flux PMSM design. The results of the present analysis show that the fine tuning of the discussed machine parameters would derive the motor to work in the required Constant Power Speed Region (CPSR) keeping the required high efficiency and torque to weight ratio. A previously proved analytical model has been used in this study to overcome the highly time consumption in the finite element model (FEM)

    Magnetic Modelling of Synchronous Reluctance and Internal Permanent Magnet Motors Using Radial Basis Function Networks

    Get PDF
    The general trend toward more intelligent energy-aware ac drives is driving the development of new motor topologies and advanced model-based control techniques. Among the candidates, pure reluctance and anisotropic permanent magnet motors are gaining popularity, despite their complex structure. The availability of accurate mathematical models that describe these motors is essential to the design of any model-based advanced control. This paper focuses on the relations between currents and flux linkages, which are obtained through innovative radial basis function neural networks. These special drive-oriented neural networks take as inputs the motor voltages and currents, returning as output the motor flux linkages, inclusive of any nonlinearity and cross-coupling effect. The theoretical foundations of the radial basis function networks, the design hints, and a commented series of experimental results on a real laboratory prototype are included in this paper. The simple structure of the neural network fits for implementation on standard drives. The online training and tracking will be the next steps in field programmable gate array based control systems

    Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion

    Get PDF
    The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp
    corecore