118 research outputs found

    Data Balancing for Efficient Training of Hybrid ANN/HMM Automatic Speech Recognition Systems

    Get PDF
    Hybrid speech recognizers, where the estimation of the emission pdf of the states of Hidden Markov Models (HMMs), usually carried out using Gaussian Mixture Models (GMMs), is substituted by Artificial Neural Networks (ANNs) have several advantages over the classical systems. However, to obtain performance improvements, the computational requirements are heavily increased because of the need to train the ANN. Departing from the observation of the remarkable skewness of speech data, this paper proposes sifting out the training set and balancing the amount of samples per class. With this method the training time has been reduced 18 times while obtaining performances similar to or even better than those with the whole database, especially in noisy environments. However, the application of these reduced sets is not straightforward. To avoid the mismatch between training and testing conditions created by the modification of the distribution of the training data, a proper scaling of the a posteriori probabilities obtained and a resizing of the context window need to be performed as demonstrated in the paper.This work was supported in part by the regional grant (Comunidad Autónoma de Madrid-UC3M) CCG06-UC3M/TIC-0812 and in part by a project funded by the Spanish Ministry of Science and Innovation (TEC 2008-06382).Publicad

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    Proceedings: Voice Technology for Interactive Real-Time Command/Control Systems Application

    Get PDF
    Speech understanding among researchers and managers, current developments in voice technology, and an exchange of information concerning government voice technology efforts are discussed

    Recognizing GSM Digital Speech

    Get PDF
    The Global System for Mobile (GSM) environment encompasses three main problems for automatic speech recognition (ASR) systems: noisy scenarios, source coding distortion, and transmission errors. The first one has already received much attention; however, source coding distortion and transmission errors must be explicitly addressed. In this paper, we propose an alternative front-end for speech recognition over GSM networks. This front-end is specially conceived to be effective against source coding distortion and transmission errors. Specifically, we suggest extracting the recognition feature vectors directly from the encoded speech (i.e., the bitstream) instead of decoding it and subsequently extracting the feature vectors. This approach offers two significant advantages. First, the recognition system is only affected by the quantization distortion of the spectral envelope. Thus, we are avoiding the influence of other sources of distortion as a result of the encoding-decoding process. Second, when transmission errors occur, our front-end becomes more effective since it is not affected by errors in bits allocated to the excitation signal. We have considered the half and the full-rate standard codecs and compared the proposed front-end with the conventional approach in two ASR tasks, namely, speaker-independent isolated digit recognition and speaker-independent continuous speech recognition. In general, our approach outperforms the conventional procedure, for a variety of simulated channel conditions. Furthermore, the disparity increases as the network conditions worsen

    An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and Separation

    Get PDF
    Speech enhancement and speech separation are two related tasks, whose purpose is to extract either one or more target speech signals, respectively, from a mixture of sounds generated by several sources. Traditionally, these tasks have been tackled using signal processing and machine learning techniques applied to the available acoustic signals. Since the visual aspect of speech is essentially unaffected by the acoustic environment, visual information from the target speakers, such as lip movements and facial expressions, has also been used for speech enhancement and speech separation systems. In order to efficiently fuse acoustic and visual information, researchers have exploited the flexibility of data-driven approaches, specifically deep learning, achieving strong performance. The ceaseless proposal of a large number of techniques to extract features and fuse multimodal information has highlighted the need for an overview that comprehensively describes and discusses audio-visual speech enhancement and separation based on deep learning. In this paper, we provide a systematic survey of this research topic, focusing on the main elements that characterise the systems in the literature: acoustic features; visual features; deep learning methods; fusion techniques; training targets and objective functions. In addition, we review deep-learning-based methods for speech reconstruction from silent videos and audio-visual sound source separation for non-speech signals, since these methods can be more or less directly applied to audio-visual speech enhancement and separation. Finally, we survey commonly employed audio-visual speech datasets, given their central role in the development of data-driven approaches, and evaluation methods, because they are generally used to compare different systems and determine their performance

    Speech recognition systems and russian pronunciation variation in the context of VoiceInteraction

    Get PDF
    The present thesis aims to describe the work performed during the internship for the master’s degree in Linguistics at VoiceInteraction, an international Artificial Intelligence (AI) company, specializing in developing speech processing technologies. The goal of the internship was to study phonetic characteristics of the Russian language, attending to four main tasks: description of the phonetic-phonological inventory; validation of transcriptions of broadcast news; validation of a previously created lexicon composed by ten thousand (10 000) most frequently observed words in a text corpus crawled from Russian reference newspapers websites; and integration of filled pauses into the Automatic Speech Recognizer (ASR). Initially, a collection of audio and text broadcast news media from Russian-speaking regions, European Russian, Belarus, and the Caucasus Region, featuring different varieties of Russian was conducted. The extracted data and the company's existing data were used to train the acoustic, pronunciation, and language models. The audio data was automatically processed in a proprietary platform and then revised by human annotators. Transcriptions produced automatically and reviewed by annotators were analyzed, and the most common errors were extracted to provide feedback to the community of annotators. The validation of transcriptions, along with the annotation of all of the disfluencies (that previously were left out), resulted in the decrease of Word Error Rate (WER) in most cases. In some cases (in European Russian transcriptions), WER increased, the models were not sufficiently effective to identify the correct words, potentially problematic. Also, audio with overlapped speech, disfluencies, and acoustic events can impact the WER. Since we used the model that was only trained with European Russian to recognize other varieties of Russian language, it resulted in high WER for Belarus and the Caucasus region. The characterization of the Russian phonetic-phonological inventory and the construction of pronunciation rules for internal and external sandhi phenomena were performed for the validation of the lexicon – ten thousand of the most frequently observed words in a text corpus crawled from Russian reference newspapers websites, were revised and modified for the extraction of linguistic patterns to be used in a statistical Grapheme-to-phone (G2P) model. Two evaluations were conducted: before the modifications to the lexicon and after. Preliminary results without training the model show no significant results - 19.85% WER before the modifications, and 19.97% WER after, with a difference of 0.12%. However, we observed a slight improvement of the most frequent words. In the future, we aim to extend the analysis of the lexicon to the 400 000 entries (total lexicon size), analyze the type of errors that are produced, decrease the word error rate (WER), and analyze acoustic models, as well. In this work, we also studied filled pauses, since we believe that research on filled pauses for the Russian language can improve the recognition system of VoiceInteraction, by reducing the processing time and increasing the quality. These are marked in the transcriptions with “%”. In Russian, according to the literature (Ten, 2015; Harlamova, 2008; Bogradonova-Belgarian & Baeva, 2018), these are %a [a], %am [am], %@ [ə], %@m [əm], %e [e], %ɨ [ɨ], %m [m], and %n [n]. In the speech data, two more filled pauses were found, namely, %na [na] and %mna [mna], as far as we know, not yet referenced in the literature. Finally, the work performed during an internship contributed to a European project - Artificial Intelligence and Advanced Data Analysis for Authority Agencies (AIDA). The main goal of the present project is to build a solution capable of automating the processing of large amounts of data that Law Enforcement Agencies (LEAs) have to analyze in the investigations of Terrorism and Cybercrime, using pioneering machine learning and artificial intelligence methods. VoiceInteraction's main contribution to the project was to apply ASR and validate the transcriptions of the Russian (religious-related content). In order to do so, all the tasks performed during the thesis were very relevant and applied in the scope of the AIDA project. Transcription analysis results from the AIDA project showed a high Out-of-Vocabulary (OOV) rate and high substitution (SUBS) rate. Since the language model used in this project was adapted for broadcast content, the religious-related words were left out. Also, function words were incorrectly recognized, in most cases, due to coarticulation with the previous or the following word.A presente tese descreve o trabalho que foi realizado no âmbito de um estágio em linguística computacional na VoiceInteraction, uma empresa de tecnologias de processamento de fala. Desde o início da sua atividade, a empresa tem-se dedicado ao desenvolvimento de tecnologia própria em várias áreas do processamento computacional da fala, entre elas, síntese de fala, processamento de língua natural e reconhecimento automático de fala, representando esta última a principal área de negócio da empresa. A tecnologia de reconhecimento de automático de fala da VoiceInteraction explora a utilização de modelos híbridos em combinação com as redes neuronais (DNN - Deep Neural Networks), que, segundo Lüscher et al. (2019), apresenta um melhor desempenho, quando comparado com modelos de end-to-end apenas. O objetivo principal do estágio focou-se no estudo da fonética da língua russa, atendendo a quatro tarefas: criação do inventário fonético-fonológico; validação das transcrições de noticiários; validação do léxico previamente criado e integração de pausas preenchidas no sistema. Inicialmente, foi realizada uma recolha dos principais meios de comunicação (áudio e texto), apresentando diferentes variedades do russo, nomeadamente, da Rússia Europeia, Bielorrússia e Cáucaso Central. Na Rússia europeia o russo é a língua oficial, na Bielorrússia o russo faz parte das línguas oficiais do país, e na região do Cáucaso Central, o russo é usado como língua franca, visto que este era falado na União Soviética e continua até hoje a ser falado nas regiões pós-Soviéticas. Tratou-se de abranger a maior cobertura possível da língua russa e neste momento apenas foi possível recolher os dados das variedades mencionadas. Os dados extraídos de momento, juntamente com os dados já existentes na empresa, foram utilizados no treino dos modelos acústicos, modelos de pronúncia e modelos de língua. Para o tratamento dos dados de áudio, estes foram inseridos numa plataforma proprietária da empresa, Calligraphus, que, para além de fornecer uma interface de transcrição para os anotadores humanos poderem transcrever os conteúdos, efetua também uma sugestão de transcrição automática desses mesmos conteúdos, a fim de diminuir o esforço despendido pelos anotadores na tarefa. De seguida, as transcrições foram analisadas, de forma a garantir que o sistema de anotação criado pela VoiceInteraction foi seguido, indicando todas as disfluências de fala (fenómenos característicos da edição da fala), tais como prolongamentos, pausas preenchidas, repetições, entre outros e transcrevendo a fala o mais próximo da realidade. Posteriormente, os erros sistemáticos foram analisados e exportados, de forma a fornecer orientações e sugestões de melhoria aos anotadores humanos e, por outro lado, melhorar o desempenho do sistema de reconhecimento. Após a validação das transcrições, juntamente com a anotação de todas as disfluências (que anteriormente eram deixadas de fora), observamos uma diminuição de WER, na maioria dos casos, tal como esperado. Porém, em alguns casos, observamos um aumento do WER. Apesar das correções efetuadas aos ficheiros analisados, os modelos não foram suficientemente eficazes no reconhecimento das palavras corretas, potencialmente problemáticas. A elevada taxa de WER nos áudios com debates políticos, está relacionada com uma maior frequência de fala sobreposta e disfluências (e.g., pausas preenchidas, prolongamentos). O modelo utilizado para reconhecer todas as variedades foi treinado apenas com a variedade de russo europeu e, por isso, o WER alto também foi observado para as variedades da Bielorrússia e para a região do Cáucaso. Numa perspetiva baseada em dados coletados pela empresa, foi realizada, de igual modo, uma caracterização e descrição do inventário fonético-fonológico do russo e a construção de regras de pronúncia, para fenómenos de sandhi interno e externo (Shcherba, 1957; Litnevskaya, 2006; Lekant, 2007; Popov, 2014). A empresa já empregava, através de um G2P estatístico específico para russo, um inventário fonético para o russo, correspondente à literatura referida anteriormente, mas o mesmo ainda não havia sido validado. Foi possível realizar uma verificação e correção, com base na caracterização dos fones do léxico do russo e nos dados ecológicos obtidos de falantes russos em situações comunicativas diversas. A validação do inventário fonético-fonológico permitiu ainda a consequente validação do léxico de russo. O léxico foi construído com base num conjunto de características (e.g., grafema em posição átona tem como pronúncia correspondente o fone [I] e em posição tónica - [i]; o grafema em posição final de palavra é pronunciado como [- vozeado] - [f]; entre outras características) e foi organizado com base no critério da frequência de uso. No total, foram verificadas dez mil (10 000) palavras mais frequentes do russo, tendo por base as estatísticas resultantes da análise dos conteúdos existentes num repositório de artigos de notícias recolhidos previamente de jornais de referência em língua russa. Foi realizada uma avaliação do sistema de reconhecimento antes e depois da modificação das dez mil palavras mais frequentemente ocorridas no léxico - 19,85% WER antes das modificações, e 19,97% WER depois, com uma diferença de 0,12%. Os resultados preliminares, sem o treino do modelo, não demonstram resultados significativos, porém, observamos uma ligeira melhoria no reconhecimento das palavras mais frequentes, tais como palavras funcionais, acrónimos, verbos, nomes, entre outros. Através destes resultados e com base nas regras criadas a partir da correção das dez mil palavras, pretendemos, no futuro, alargar as mesmas a todo o léxico, constituído por quatrocentas mil (400 000) entradas. Após a validação das transcrições e do léxico, com base na literatura, foi também possível realizar uma análise das pausas preenchidas do russo para a integração no sistema de reconhecimento. O interesse de se incluir também as pausas no reconhecedor automático deveu-se sobretudo a estes mecanismos serem difíceis de identificar automaticamente e poderem ser substituídos ou por afetarem as sequências adjacentes. De acordo com o sistema de anotação da empresa, as pausas preenchidas são marcadas na transcrição com o símbolo de percentagem - %. As pausas preenchidas do russo encontradas na literatura foram %a [a], %am [am] (Rose, 1998; Ten, 2015), %@ [ə], %@m [əm] (Bogdanova-Beglarian & Baeva, 2018) %e [e], %ɨ [ɨ], %m [m] e %n [n] (Harlamova, 2008). Nos dados de áudio disponíveis na referida plataforma, para além das pausas preenchidas mencionadas, foram encontradas mais duas, nomeadamente, %na [na] e %mna [mna], até quanto nos é dado saber, ainda não descritas na literatura. De momento, todas as pausas preenchidas referidas já fazem parte dos modelos de reconhecimento automático de fala para a língua russa. O trabalho desenvolvido durante o estágio, ou seja, a validação dos dados existentes na empresa, foi aplicado ao projeto europeu AIDA - The Artificial Intelligence and Advanced Data Analysis for Authority Agencies. O objetivo principal do presente projeto é de criar uma solução capaz de detetar possíveis crimes informáticos e de terrorismo, utilizando métodos de aprendizagem automática. A principal contribuição da VoiceInteraction para o projeto foi a aplicação do ASR e validação das transcrições do russo (conteúdo relacionado com a religião). Para tal, todas as tarefas realizadas durante a tese foram muito relevantes e aplicadas no âmbito do projeto AIDA. Os resultados da validação das transcrições do projeto, mostraram uma elevada taxa de palavras Fora de Vocabulário (OOV) e uma elevada taxa de Substituição (SUBS). Uma vez que o modelo de língua utilizado neste projeto foi adaptado ao conteúdo noticioso, as palavras relacionadas com a religião não se encontravam neste. Além disso, as palavras funcionais foram incorretamente reconhecidas, na maioria dos casos, devido à coarticulação com a palavra anterior ou a seguinte
    corecore