10,930 research outputs found

    Economic evaluation of bio-based supply chains with CO2 capture and utilisation

    Get PDF
    Carbon capture and storage (CCS) and carbon capture and utilisation (CCU) are acknowledged as important R&D priorities to achieve environmental goals set for next decades. This work studies biomass-based energy supply chains with CO2 capture and utilisation. The problem is formulated as a mixed-integer linear program. This study presents a flexible supply chain superstructure to answer issues on economic and environmental benefits achievable by integrating biomass-coal plants, CO2 capture and utilisation plants; i.e. location of intermediate steps, fraction of CO2 emissions captured per plant, CO2 utilisation plants' size, among others. Moreover, eventual incentives and environmental revenues will be discussed to make an economically feasible project. A large-size case study located in Spain will be presented to highlight the proposed approach. Two key scenarios are envisaged: (i) Biomass, capture or utilisation of CO2 are not contemplated; (ii) Biomass, capture and CO2 utilisation are all considered. Finally, concluding remarks are drawn.Peer ReviewedPostprint (author's final draft

    Opportunities for Dutch Biorefineries

    Get PDF
    Deze Roadmap Bioraffinage beschrijft een aantal mogelijke routes naar de ontwikkeling en implementatie van een bioraffinage-gerelateerde Bio-based Economy in Nederland. De Roadmap combineert korte- en middellange termijn mogelijkheden (commerciële implementatie, demonstratie plants, pilot plants en gerelateerd toegepast onderzoek) met strategisch onderzoek voor de langere termijn. Tevens zijn vier z.g. Moonshots uitgewerkt, als voorziene bioraffinagestrategieën met een grote potentie voor de Nederlandse economi

    Solar energy

    Get PDF

    Energy storage

    Get PDF

    Bioenergy

    Get PDF

    CO2 CAPTURE AND STORAGE IN PORTUGAL A BRIDGE TO A LOW CARBON ECONOMY

    Get PDF
    Current projections indicate that further efforts are required at national and EU level to keep the EU on track towards its new 2030 targets, and cut EU's greenhouse gas emissions by 80 to 95 % by 2050, as its longer term objectives to decarbonise the European energy and industry system in line with global climate stabilization achievement. This study shows how low carbon technologies interplay up to 2050 to achieve aggressive mitigation targets in Portugal, under diverse scenarios conditions. While power generation appears to become increasingly supported by renewables and energy efficiency, intensive industry should consider CCS for deep CO from industrial processes. As soon as private companies and public policy bodies identify the needs and opportunities from adopting CCS, while taking current uncertainty, the higher the chance to prevent competitive losses while bridge Portugal to a carbon constrained economy

    Strategies for regional deployment of hydrogen infrastructure

    Get PDF
    In response to the growing urge towards decarbonisation, more and more initiatives have been set to reduce and/or compensate the level of CO2 (carbon dioxide) emitted by human activities, which is one of the main responsible of the incumbent threats of “global warming” and “climate change”. “Climate neutrality by 2050” has become a decisive topic for political agendas worldwide and, against that background, the hydrogen economy can play a significant role. More and more countries have launched roadmaps and strategies for the creation of hydrogen value chains at national and international level. Also on regional scale, local integrated hydrogen ecosystems are growing, the so-called “Hydrogen Valleys”. These include German region North Rhine-Westphalia (NRW), which officially presented a hydrogen roadmap in November 2020, establishing targets for both the short (2025) and medium terms (2030) for the adoption of hydrogen in the sectors of Mobility, Industry, Energy & Infrastructure. The purpose of the present thesis is to investigate techno-economic strategies for the introduction of a hydrogen infrastructure in NRW over the next 15 years (2035), enabling the achievement of the abovementioned targets. Moreover, being buses explicitly mentioned within NRW hydrogen roadmap, the present thesis focuses on strategies to ensure the optimal deployment of hydrogen buses within the region. The work is conducted with support from the research institute of Forschungszentrum JĂŒlich (FZJ), North-Rhine Westphalia, Germany. A simulation model (H2MIND) developed by FZJ is taken as main research tool. The output from two other models by FZJ (FINE-NESTOR and FINE-Infrastructure, respectively), which defined the scenario behind the NRW H2 Roadmap, are reviewed and served as starting point for the adaptation of the H2MIND model. An integrative mapping activity regarding i) existing bus depots for NRW population mobility and ii) existing steel production sites in Germany serves the purpose of increasing the resolution of H2MIND model in the geospatial description of the potential hydrogen refuelling stations for bus companies in NRW. Both the hydrogen demand and production derived from FINE-NESTOR are distributed geospatially over Germany for the years 2025-2030-2035, according to the hydrogen-related technologies modelled within H2MIND. The demand is broken down into Buses, Trains, Cars, Heavy-Duty Vehicles (HDVs) and Light Commercial Vehicles (LCVs), Material Handling Vehicles (MHVs), Industrial uses for Steel, Ammonia, Methanol and other Chemicals. The production is modelled around onshore wind power plants, steam methane reforming industrial locations and import. Four hydrogen supply chain pathways were compared by H2MIND simulations: i) transport and distribution by gaseous hydrogen trailers (‘GH2 trucks’), ii) transport and distribution by liquefied hydrogen trailers (‘LH2 trucks’), iii) transport via newly built hydrogen pipelines plus distribution via gaseous hydrogen trailers (‘new pipelines’), iv) transport via reassigned natural gas pipelines plus distribution via gaseous hydrogen trailers (‘reassigned NG pipelines’). The analysis and assessment of the H2MIND simulation results are conducted mainly on economic merit. The key variable used for the assessment is the weighted average Total Expense (TOTEX) [€/kg H2]. This comparison is carried out from global-cost perspective, then the cost breakdown is considered in order to identify specific features in the cost determination. The weighted average TOTEX is calculated also for the case of onsite renewable energy-based electrolysis at bus hydrogen refuelling stations, in order to understand how such a strategic choice could impact the overall hydrogen supply chain cost – various shares of self-sufficiency at bus depots are considered, ranging from 0% (fully centralized configuration, no self-sufficiency) to 100% (total self-sufficiency, complete independent). An overall three-fold increase in hydrogen demand is expected between the years 2025 and 2035 (from 450.72 kt/yr to 1,862.33 kt/yr in Germany, and from 177.87 kt/yr to 519.16 kt/yr in NRW). Both on national and regional level, the main demand driver is expected to shift from the Industrial sector (in 2025) to Mobility (in 2035). As for the geospatial distribution, NRW concentrates the highest hydrogen demand in the country, covering alone approximatively one third of the total German hydrogen demand. Within NRW, the relevance of a district depends on what hydrogen-consuming sector is considered. For Mobility and public transportation, based on the allocation factors used within H2MIND model, Köln ranks as the district with highest demand in many mobility sectors. For buses, Aachen, Wuppertal, DĂŒsseldorf are the three top cities in the ranking in addition to Köln. Recommendation is that investments focus on high hydrogen-demand districts during the start-up phase of infrastructure development (period 2025-2035), where higher utilization factors of the infrastructural assets are expected and financial risks are therefore minimized. Looking into the weighted average TOTEX for the four analysed pathways, gaseous hydrogen trailers (‘GH2 trucks’) are the most convenient option for connecting production and consumption during the start-up phase of infrastructure development (period 2025-2035). Growing cost competitiveness is expected for ‘reassigned NG pipelines’ after 2035, thanks to the increased hydrogen demand and the higher utilization factor for pipelines. For the period 2025-2035, a fully centralized hydrogen supply pathway is the best option for covering bus-related hydrogen demand in the introductory phase of hydrogen infrastructure creation, with cost parity for onsite electrolysis being expected for the future after 2035Som svar pĂ„ kraven pĂ„ minskade koldioxidutslĂ€pp har fler och fler initiativ tagits för att minska och/eller kompensera nivĂ„n av CO2 (koldioxid) som slĂ€pps ut pĂ„ grund av mĂ€nskliga aktiviteter, vilket Ă€r en av de frĂ€msta orsakerna till de nuvarande hoten om "global uppvĂ€rmning". ” och ”klimatförĂ€ndringar”. "Klimatneutralitet till 2050" har blivit ett avgörande inslag pĂ„ politiska agendor vĂ€rlden över och mot den bakgrunden kan vĂ€tgasekonomin spela en betydande roll. Fler och fler lĂ€nder har lanserat fĂ€rdplaner och strategier för att skapa vĂ€rdekedjor för vĂ€tgas pĂ„ nationell och internationell nivĂ„. Även i regional skala vĂ€xer lokala integrerade vĂ€tgas-ekosystem, de sĂ„ kallade "vĂ€tgasdalarna". Dessa inkluderar den tyska regionen Nordrhein-Westfalen (NRW), som officiellt presenterade en fĂ€rdplan för vĂ€tgas i november 2020, som faststĂ€llde mĂ„l för bĂ„de kort (2025) och medellĂ„ng sikt (2030) för införandet av vĂ€tgas inom sektorerna rörlighet, industri, Energi & Infrastruktur. Syftet med denna avhandling Ă€r att undersöka tekniska och ekonomiska strategier för införandet av en vĂ€tgasinfrastruktur i NRW under de kommande 15 Ă„ren (2035), vilket gör det möjligt att uppnĂ„ ovan nĂ€mnda mĂ„l. Dessutom, eftersom bussar uttryckligen nĂ€mns i NRW:s vĂ€tgasfĂ€rdplan, fokuserar detta examensarbete pĂ„ strategier för att sĂ€kerstĂ€lla en optimal utplacering av vĂ€tgasbussar inom regionen. Arbetet bedrivs med stöd frĂ„n forskningsinstitutet Forschungszentrum JĂŒlich (FZJ), Nordrhein-Westfalen, Tyskland. En simuleringsmodell (H2MIND) utvecklad av FZJ anvĂ€nds som huvudverktyg för forskning. Resultatet frĂ„n tvĂ„ andra modeller av FZJ (FINE-NESTOR respektive FINE-Infrastructure), som definierade scenariot bakom NRW H2 Roadmap, granskas och tjĂ€nade som utgĂ„ngspunkt för anpassningen av H2MIND-modellen. En integrerad kartlĂ€ggning av i) befintliga bussdepĂ„er för NRW- befolkningsrörlighet och ii) befintliga stĂ„lproduktionsanlĂ€ggningar i Tyskland tjĂ€nar syftet att öka upplösningen av H2MIND-modellen i den geospatiala beskrivningen av potentiella vĂ€tgastankstationer för bussföretag i NRW. BĂ„de vĂ€tgasefterfrĂ„gan och produktionen frĂ„n FINE-NESTOR distribueras geospatialt över Tyskland för Ă„ren 2025-2030-2035, enligt de vĂ€tgasrelaterade teknologierna som modelleras inom H2MIND. EfterfrĂ„gan Ă€r uppdelad i bussar, tĂ„g, bilar, tunga fordon (HDV) och lĂ€tta kommersiella fordon (LCV), materialhanteringsfordon (MHV), industriell anvĂ€ndning för stĂ„l, ammoniak, metanol och andra kemikalier. Produktionen Ă€r modellerad kring vindkraftverk pĂ„ land, Ă„ngmetanreformerande industrilokaler och import. Fyra varianter av vĂ€tgasförsörjningskedjan jĂ€mfördes med H2MIND-simuleringar: i) transport och distribution med gasformiga vĂ€tgasslĂ€p ('GH2-lastbilar'), ii) transport och distribution med slĂ€p för flytande vĂ€te ('LH2-lastbilar'), iii) transport via nybyggda vĂ€tgas rörledningar plus distribution via slĂ€p för gasformigt vĂ€tgas (”nya pipelines”), iv) transport via tidigare naturgasledningar plus distribution via slĂ€p för gasformigt vĂ€te (”om-utnyttjade naturgasrörledningar”). Analysen och bedömningen av H2MIND-simuleringsresultaten utförs huvudsakligen pĂ„ ekonomiska meriter. Den nyckelvariabel som anvĂ€nds för bedömningen Ă€r den vĂ€gda genomsnittliga totala kostnaden (TOTEX) [€/kg H2]. Denna jĂ€mförelse görs ur ett globalt kostnadsperspektiv, sedan analyseras kostnadsfördelningen för att identifiera specifika egenskaper i kostnadsbestĂ€mningen. Det viktade genomsnittet av TOTEX berĂ€knas Ă€ven för fallet med elektrolys baserad pĂ„ förnybar energi pĂ„ plats vid vĂ€tgastankstationer för bussar, för att förstĂ„ hur ett sĂ„dant strategiskt val skulle kunna pĂ„verka den totala kostnaden för vĂ€tgasförsörjningskedjan – olika andelar av sjĂ€lvförsörjning vid bussdepĂ„er övervĂ€gs, allt frĂ„n 0 % (helt centraliserad konfiguration, ingen sjĂ€lvförsörjning) till 100 % (total sjĂ€lvförsörjning, fullstĂ€ndigt oberoende). En övergripande trefaldig ökning av efterfrĂ„gan pĂ„ vĂ€tgas förvĂ€ntas mellan Ă„ren 2025 och 2035 (frĂ„n 450,72 kt/Ă„r till 1 862,33 kt/Ă„r i Tyskland och frĂ„n 177,87 kt/Ă„r till 519,16 kt/Ă„r i NRW). BĂ„de pĂ„ nationell och regional nivĂ„ förvĂ€ntas den frĂ€msta efterfrĂ„gedrivkraften flyttas frĂ„n industrisektorn (2025) till mobilitet (2035). NĂ€r det gĂ€ller den geospatiala fördelningen, koncentrerar NRW den högsta efterfrĂ„gan pĂ„ vĂ€tgas i landet, och tĂ€cker ensam ungefĂ€r en tredjedel av det totala tyska vĂ€tgasbehovet. Inom NRW beror ett distrikts relevans pĂ„ vilken vĂ€tgasförbrukande sektor som betraktas. För Mobilitet och kollektivtrafik, baserat pĂ„ allokeringsfaktorer som anvĂ€nds inom H2MIND-modellen, rankas Köln som det distrikt med högst efterfrĂ„gan inom mĂ„nga mobilitetssektorer. För bussar Ă€r Aachen, Wuppertal, DĂŒsseldorf de tre bĂ€sta stĂ€derna i rankingen förutom Köln. Rekommendation Ă€r att investeringar fokuserar pĂ„ distrikt med hög efterfrĂ„gan pĂ„ vĂ€tgas under uppstartsfasen av infrastrukturutveckling (perioden 2025–2035), dĂ€r högre utnyttjandefaktorer av infrastrukturtillgĂ„ngarna förvĂ€ntas och finansiella risker dĂ€rför minimeras. Om man tittar pĂ„ det vĂ€gda genomsnittliga TOTEX för de fyra analyserade varianterna, Ă€r slĂ€p med vĂ€te i gasform (‘GH2-lastbilar’) det lĂ€mpligaste alternativet för att koppla samman produktion och konsumtion under uppstartsfasen av infrastrukturutvecklingen (perioden 2025–2035). Ökande kostnadsfördelar förvĂ€ntas för "om-utnyttjade naturgasrörledningar" efter 2035, tack vare den ökade efterfrĂ„gan pĂ„ vĂ€tgas och den högre utnyttjandefaktorn för rörledningar. För perioden 2025–2035 Ă€r en helt centraliserad vĂ€tgasförsörjningsvĂ€g det bĂ€sta alternativet för att tĂ€cka bussrelaterad efterfrĂ„gan pĂ„ vĂ€tgas i den inledande fasen av etablerandet av en vĂ€tgasinfrastruktur, med kostnadsparitet för elektrolys pĂ„ plats vilket förvĂ€ntas vara lösningen efter 2035Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.2 - Per a 2030, augmentar substancialment el percentatge d’energia renovable en el con­junt de fonts d’energiaObjectius de Desenvolupament Sostenible::11 - Ciutats i Comunitats Sostenibles::11.2 - Per a 2030, proporcionar accĂ©s a sistemes de transport segurs, assequibles, accessi­bles i sostenibles per a totes les persones, i millorar la seguretat viĂ ria, en particular mitjan­çant l’ampliaciĂł del transport pĂșblic, amb especial atenciĂł a les necessitats de les persones en situaciĂł vulnerable, dones, nenes, nens, persones amb discapacitat i persones gran

    Reaching net-zero carbon emissions in construction supply chains – Analysis of a Swedish road construction project

    Get PDF
    Recent estimates suggest that the construction sector accounts for approximately one quarter of global CO2\ua0emissions. This paper assesses the potential for reducing the climate impact of road construction. The study is\ua0structured as a participatory integrated assessment with involvement from key stakeholders in the supply chain,\ua0supported by energy and material flow mapping, an extensive literature review and a scenario analysis. Theresults indicate that it is technically possible to halve road construction CO2 emissions with today’s best available\ua0technologies and practices, to abate more than three quarters of the emissions by 2030 and achieve close to net\ua0zero emissions by 2045. Realising the current potential would rely on sufficient availability of sustainably\ua0produced second-generation biofuels, indicating a need to speed up the implementation of alternative abatementmeasures, including optimization of material use and mass handling requirements, increased recycling of steel,\ua0asphalt and aggregates and enhanced use of alternative binders in concrete. Policy measures and procurement\ua0strategies should be aligned to support these measures with a clear supply chain focus. For deep decarbonization\ua0several key opportunities and obstacles for realisation of breakthrough technologies for basic industry are\ua0highlighted – including electrification and carbon capture for steel and cement, and hybridisation and electrification\ua0for heavy transport and construction equipment. There is a clear need to prepare for deeper abatement\ua0and associated transformative shifts already now and to carefully consider the pathway of getting there while\ua0avoiding pitfalls along the way, such as overreliance on biofuels or cost optimizations which cannot be scaled up\ua0to the levels required

    Optimization of CCUS supply chains in the UK: A strategic role for emissions reduction

    Get PDF
    The UK is the second largest emitter of carbon dioxide in Europe. It aims to take urgent actions to achieve the 2030 target for CO_{2} emissions reduction imposed by EU environmental policies. Three different carbon capture utilization and storage (CCUS) supply chains are developed giving economic indicators for CO_{2} utilization routes not implying carbon dioxide hydrogenation (i.e. with high TRL). The study presents an innovative proposal to reduce CO_{2} impact in the UK, a country rich in coal, which requires reduction of carbon dioxide emissions from flue gases as the easiest and best performing solution. Bunter Sandstone, Scottish offshore and Ormskirk Sandstone are the storage sites considered, while several attractive potential utilization options are considered. Through minimization of total costs, the CCUS supply chain with Bunter Sandstone as storage site results in the most economically profitable solution due to the highest value of net present value (€ 0.554 trillion) and lowest value of pay back period (2.85 years). Only carbon tax is considered. The total cost is € 1.04 billion/year. Across the supply chain, 6.4 Mton/year of carbon dioxide emissions are avoided, to be either stored or used for calcium carbonate production. Future work should consider uncertainty, dynamics of market demand and social aspects
    • 

    corecore