72 research outputs found

    Comparing Programming Self-Esteem of Upper Secondary School Teachers to CS1 Students

    Get PDF
    Teacher self-esteem has been found to impact student learning in a number of non-computing fields. As computing slowly becomes a part of the upper secondary school (high school) curriculum in many countries, instruments designed to measure teachers’ programming self-esteem can help inform classroom practice and processes such as teacher professional development needs. This study examines if there are differences in programming self-esteem (using the Bergin Programming Self-Esteem Instrument) between upper secondary school teachers and CS1 students in Ireland. In addition this study provides evidence of validity when using this instrument (originally developed for CS1 students) to measure upper secondary school teacher programming self-esteem. To test for evidence of validity, we compared the results of the programming self-esteem construct given to upper secondary school teachers (n=130) to a recent study of programming selfesteem among CS1 students (n=693). We found evidence of both reliability and validity with teachers that aligns with the evidence found for the CS1 students, demonstrating utility for use with teacher cohorts. Comparing these findings, teachers reported statistically significantly lower programming self-esteem compared to CS1 students. Interestingly CS1 students identifying as male had a statistically significant higher programming self-esteem than those identifying as female. However, we found no statistically significant difference for teacher gender, unlike previous work. Our results indicate that teacher programming self-esteem should be given consideration in the design and implementation of professional development

    Implicit Theories and Self-efficacy in an Introductory Programming Course

    Full text link
    Contribution: This study examined student effort and performance in an introductory programming course with respect to student-held implicit theories and self-efficacy. Background: Implicit theories and self-efficacy shed a light into understanding academic success, which must be considered when developing effective learning strategies for programming. Research Questions: Are implicit theories of intelligence and programming, and programming-efficacy related to each other and student success in programming? Is it possible to predict student course performance using a subset of these constructs? Methodology: Two consecutive surveys (N=100 and N=81) were administered to non-CS engineering students in I\c{s}{\i}k University. Findings: Implicit theories and self-beliefs are interrelated and correlated with effort, performance, and previous failures in the course and students explain failure in programming course with "programming-aptitude is fixed" theory, and also that programming is a difficult task for themselves.Comment: Programming Education. 8 page

    Evaluating Creative Choice in K-12 Computer Science Curriculum

    Get PDF
    Computer Science is an increasingly important topic in K-12 education. Ever since the computing crisis of the early 2000s, where enrollment in CS dropped by over half in a five year span, increasing research has gone into improving and broadening enrollment in CS courses. Research shows the importance of introducing CS at a young age and the need for more exposure for younger children and young adults alike in order to work towards equity in the field. While there are many reasons for disinterest in CS courses, studies found one reason young adults do not want to study CS is a perception of it being tedious and lacking opportunities for creativity. Making more creative assignments is one way to try and engage more students who may not feel like stereotypical computer scientists. This thesis focuses in on the effects of creative choice in CS curriculum on students\u27 self-efficacy, engagement/preferences, and performance. It aims to capture the effects of creative choice on a range of K-12 students of varying demographics in order to make CS more accessible for everyone. The first half of the thesis experimentally validates the effects of creative choice in existing 5th grade CS classes. We created two variants of worksheets for the students - creative worksheets and rigid worksheets. After distributing these worksheets, surveys, and quizzes, we found students still feel a sense of ownership with limited versions of creative choice and benefit from a blend of creative and rigid instructions. In addition, student performance was not affected by our different treatments. The second half of the thesis adapted and launched the fifth grade curriculum to a new demographic, teaching the course to Juvenile Hall students. Student surveys and reports from their teacher showed this class had a positive impact and was well received by students and staff. We found students would prefer a longer class next iteration, as this one only extended five weeks. Future work will be needed to experimentally evaluate the specific impact of creative choice in this new demographic

    Defining the Competencies, Programming Languages, and Assessments for an Introductory Computer Science Course

    Get PDF
    The purpose of this study was to define the competencies, programming languages, and assessments for an introductory computer science course at a small private liberal arts university. Three research questions were addressed that involved identifying the competencies, programming languages, and assessments that academic and industry experts in California’s Central Valley felt most important and appropriate for an introduction to computer science course. The Delphi methodology was used to collect data from the two groups of experts with various backgrounds related to computing. The goal was to find consensus among the individual groups to best define aspects that would best comprise an introductory CS0 course for majors and non-majors. The output would be valuable information to be considered by curriculum designers who are developing a new program in software engineering at the institution. The process outlined would also be useful to curriculum designers in other fields and geographic regions who attempt to address their local education needs. Four rounds of surveys were conducted. The groups of experts were combined in the first round to rate the items in the straw models determined from the literature and add additional components when necessary. The academic and industry groupings were separated for the remainder of the study so that a curriculum designer could determine not only the items deemed most important, but also their relative importance among the two distinct groups. The experts selected items in each of the three categories in the second round to reduce the possibilities for subsequent rounds. The groups were then asked to rank the items in each of the three categories for the third round. A fourth round was held as consensus was not reached by either of the groups for any of the categories as determined by Kendall’s W. The academic experts reached consensus on a list of ranked competencies in the final round and showed a high degree of agreement on lists of ranked programming languages and assessments. Kendall’s W, values, however, were just short of the required 0.7 threshold for consensus on these final two items. The industry experts did not reach consensus and showed low agreement on their recommendations for competencies, programming languages, and assessments

    Impact of Scratch on the achievements of first-year computer science students in programming in some Nigerian polytechnics

    Get PDF
    To support the advancement of modern civilisation, our institutions of higher learning must produce the right pool of professionals, who can develop innovative software. However, the teaching and learning of the first programming language (CS1) remains a great challenge for most educators and novice computer students. Indicators such as failure and attrition rates, and CS1 student engagement, continue to show that conventional pedagogy does not adequately meet the needs of some beginning CS students. For its ease in introducing novices to programming, Scratch—a visual programming environment following the constructionism philosophy of Seymour Papert—is now employed even in some higher education CS1 classes with mixed evidence of its impact. Scratch captures the constructionist agenda by its slogan: “Imagine, Program, Share.” Therefore, this study explored the impart of using a constructionist Scratch programming pedagogy on higher education CS1 students’ achievements. This study also sought to compare the impacts of the two CS1 modes: the conventional class - involving textual programming language, lectures and labs, and the constructionist Scratch inquiry-based programming class. It further aims to discover if gender, academic level, age, prior programming, and visual artistic abilities moderate the effects of programming pedagogy on students’ achievements. To realize the study’s aims, the study employed a quasi-experimental pretest-posttest nonequivalent groups design, involving four intact CS1 classes of polytechnic students (N = 418) in north-central Nigeria. The investigation was conducted in phases: a pilot (n = 236) and main (n=182) studies lasting two academic sessions, with each study comprising one experimental and one control group. In each session, learning in both modes lasted for six weeks. In both studies, purposive sampling was employed to select institutions, and selected institutions were randomly assigned to treatment groups. Instruments employed included CS1 Student Profile Questionnaire (CSPROQ) and Introductory Programming Achievement Test (IPAT). To strengthen the research design, I employed Coarsened Exact Matching (CEM) algorithm—after conducting a priori power analysis—to generate matched random samples of cases from both studies. Thus, research data employed in the analysis include: from the pilot, 41 cases in each treatment group; from the main study, 42 cases in each treatment group. Descriptive and inferential statistics were employed to find answers to research questions and test the research hypothesis. Data from both studies satisfied the requirements for statistical tests employed, i.e., t-test and ANCOVA. The alpha level used in testing hypotheses was p = 0.05. The dependent variable is the IPAT post-test score, while the independent variables are treatment, gender, age, academic achievement level, prior programming, and prior visual art. The covariate was the IPAT pretest score. Statistical analyses were conducted using SPSS version 23. The t-test results from both pilot and main studies indicated that, both programming pedagogies had significant effects on student IPAT scores, although the effect of the constructionist Scratch intervention was higher. Results from the one-way ANCOVA analysis of both pilot and main study data—while controlling for students’ IPAT pretest scores—yielded the same outcome: There was significant main effect of treatment on students’ IPAT posttest scores, although the impact was moderate. Controlling for pre test scores, analysis of the main studies data yielded no significant main effects of: gender, age, academic level, prior programming and prior visual artistic ability. The result from the main study also reveals no interaction effect of treatment, gender, academic level, age, prior programming, and prior artistic ability. While the quality of CS1 students’ performance in each session varies as their IPAT achievements show, yet the results of this research revealed a consistent pattern: Students in the constructionist Scratch class outperformed those in the conventional class, although the impart was moderate. This finding implies college students without prior programming experience can perform better in a class following a constructionist Scratch programming pedagogy. The study recommends the use of Scratch, following a constructionist pedagogy with first-year students in colleges, especially those without prior background in programmingSchool of ComputingPh. D. (Computing Education

    Directing Incoming CS Students to an Appropriate Introductory Computer Science Course

    Get PDF
    Full Paper. Research. We discuss possible ways to direct students to right level of introductory programming. While many schools offer college preparatory or advanced placement courses in computing, there is still, unfortunately, a large part of the "college-ready" population that has no opportunity to learn computing at all before they arrive. Regulation of CS education at the state/province or national level is still rare (but growing). Thus incoming students possess a wide range of skills and knowledge. When coupled with increasing enrollments, this diversity of experience can result in courses having large numbers of both absolute beginners and seasoned coders. Such courses are difficult to teach, intimidate novice students, and bore those with more experience. This can result in low engagement and retention.Unlike mathematics and language arts, introductory courses in CS vary widely from one institution to another in both conceptual material and programming language used. A standard point of entry to college mathematics is a calculus course, with some students instead starting earlier with pre-calculus or an algebra refresher, and others starting out in the second-term calculus course. There is rarely a concern about student skill being hidden by notational or other language differences, because the language of mathematics is close to universal. Similarly, freshman language arts courses in reading and/or writing assume a certain level of skill and maturity of comprehension and expressiveness in the target language; otherwise remedial courses are provided.We investigate placement of incoming first year students into appropriate introductory computer science courses at higher education institutions where there is more than one choice of first course. The goal is to determine the best way to decide which first course would be the most helpful for each student

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Review of Measurements Used in Computing Education Research and Suggestions for Increasing Standardization

    Get PDF
    The variables that researchers measure and how they measure them are central in any area of research. Which research questions can be asked and how they are answered depends on measurement. This paper describes a systematic review of the literature in computing education research to summarize the commonly used variables and measurements in 197 papers and to compare them to best practices in measurement for human-subjects research. Characteristics of the literature that are examined in the review include variables measured (including learner characteristics), measurements used, and type of data analysis. The review illuminates common practices related to each of these characteristics and their interactions with other characteristics. The paper lists standardized measurements that were used in the literature and highlights commonly used variables for which no standardized measures exist. To conclude, this review compares common practice in computing education to best practices in human-subjects research to make recommendations for increasing rigor

    Development and Application of a Rasch Model Measure of Student Competency in University Introductory Computer Programming

    Get PDF
    University computer programming instruction nomenclature commonly uses the term Computer Science 1 (CS1) to describe introductory units of study. Success in CS1 is important as a pre-requisite for further study in programming and related disciplines. It is important to measure student progress and the antecedent influences. This study applied the Rasch Model and Messick’s Unified Theory of Validity to construct an interval level measure of CS1 competency with demonstrable suitability for this purpose

    Intention to Remain in a Computing Program: Exploring the Role of Passion and Grit

    Get PDF
    While there are many educational initiatives to promote computer programming (or coding)—the core of an IT major—to the masses of incoming students, we lack pedagogical strategies to retain IT students. This study explores how harmonious passion, obsessive passion, and grit influence computer programming attitude (i.e., coding affect, cognition and behavior), which can lead to student retention. Based on data collected from 109 undergraduate IT students enrolled in a programming course, our exploratory study reveals that harmonious passion leads to positive coding affect and cognition. Obsessive passion has a negative effect on coding affect but contributes significantly to coding behavior. The finding also shows that students who in a variety of coding behaviors are fueled by harmonious and obsessive passion, and grit. Coding affect and behaviors, therefore influence the intention to stay an IT major, suggesting that educators can change students’ computer programming attitude by fostering harmonious passion and grit as they engage in programming activities
    • …
    corecore