488 research outputs found

    Cascaded- and Modular-Multilevel Converter Laboratory Test System Options: A Review

    Get PDF
    The increasing importance of cascaded multilevel converters (CMCs), and the sub-category of modular multilevel converters (MMCs), is illustrated by their wide use in high voltage DC connections and in static compensators. Research is being undertaken into the use of these complex pieces of hardware and software for a variety of grid support services, on top of fundamental frequency power injection, requiring improved control for non-traditional duties. To validate these results, small-scale laboratory hardware prototypes are often required. Such systems have been built by many research teams around the globe and are also increasingly commercially available. Few publications go into detail on the construction options for prototype CMCs, and there is a lack of information on both design considerations and lessons learned from the build process, which will hinder research and the best application of these important units. This paper reviews options, gives key examples from leading research teams, and summarizes knowledge gained in the development of test rigs to clarify design considerations when constructing laboratory-scale CMCs.This work was supported in part by The University of Manchester supported by the National Innovation Allowance project ``VSC-HVDC Model Validation and Improvement'' and Dr. Heath's iCASE Ph.D. studentship supported through Engineering and Physical Sciences Research Council (EPSRC) and National Grid, in part by the Imperial College London supported by EPSRC through the HubNet Extension under Grant EP/N030028/1, in part by an iCASE Ph.D. Studentship supported by EPSRC and EDF Energy and the CDT in Future Power Networks under Grant EP/L015471/1, in part by University of New South Wales (UNSW) supported by the Solar Flagships Program through the Education Infrastructure Fund (EIF), in part by the Australian Research Council through the Discovery Early Career Research Award under Grant DECRA_DE170100370, in part by the Basque Government through the project HVDC-LINK3 under Grant ELKARTEK KK-2017/00083, in part by the L2EP research group at the University of Lille supported by the French TSO (RTE), and in part by the Hauts-de-France region of France with the European Regional Development Fund under Grant FEDER 17007725

    A DC-DC Multiport Converter Based Solid State Transformer Integrating Distributed Generation and Storage

    Get PDF
    abstract: The development of a Solid State Transformer (SST) that incorporates a DC-DC multiport converter to integrate both photovoltaic (PV) power generation and battery energy storage is presented in this dissertation. The DC-DC stage is based on a quad-active-bridge (QAB) converter which not only provides isolation for the load, but also for the PV and storage. The AC-DC stage is implemented with a pulse-width-modulated (PWM) single phase rectifier. A unified gyrator-based average model is developed for a general multi-active-bridge (MAB) converter controlled through phase-shift modulation (PSM). Expressions to determine the power rating of the MAB ports are also derived. The developed gyrator-based average model is applied to the QAB converter for faster simulations of the proposed SST during the control design process as well for deriving the state-space representation of the plant. Both linear quadratic regulator (LQR) and single-input-single-output (SISO) types of controllers are designed for the DC-DC stage. A novel technique that complements the SISO controller by taking into account the cross-coupling characteristics of the QAB converter is also presented herein. Cascaded SISO controllers are designed for the AC-DC stage. The QAB demanded power is calculated at the QAB controls and then fed into the rectifier controls in order to minimize the effect of the interaction between the two SST stages. The dynamic performance of the designed control loops based on the proposed control strategies are verified through extensive simulation of the SST average and switching models. The experimental results presented herein show that the transient responses for each control strategy match those from the simulations results thus validating them.Dissertation/ThesisPh.D. Electrical Engineering 201

    Arm Inductance and Sub-module Capacitance Selection in Modular Multilevel Converter

    Get PDF
    Arm inductor and sub-module (SM) capacitor are two key components in the modular multilevel converter (MMC). Optimizing the selection of arm inductance and sub-module capacitance is thus critical for the converter design. This report aims at developing a selection principle for arm inductance and sub-module capacitance in MMC. Arm inductors in MMC are used to limit the circulating current which flows within the converter. The switching frequency harmonic is found to be the dominant component in the circulating current when an active circulating current suppressing controller is implemented. The analytical relationship between the arm inductance and switching frequency circulating current is derived, based on which the arm inductance requirement is obtained by limiting the circulating current to meet the defined specifications. In some applications, the arm inductors can also be used to limit the overcurrent during a dc side short circuit fault. The relationship between the arm inductance and fault current is investigated, as well as its impact on arm inductance selection. The sub-module capacitance in MMC is selected mainly based on the capacitor voltage fluctuation constrain. The voltage unbalance among sub-module capacitors is revealed to have a significant impact on the sub-module capacitance selection, as the unbalanced voltage would increase the total capacitor voltage fluctuation. The impact of sub-module capacitors’ unbalanced voltage on the total voltage fluctuation is evaluated. An analytical expression of the unbalanced voltage is derived; it can be used to calculate the maximum capacitor voltage fluctuation, and thus used for the sub-module capacitance selection. A simulation has been carried out in the MATLAB, and the simulation results verify the theoretical analysis. A scaled-down MMC prototype has been built, and the experimental results validate part of the analysis

    Coordinated control of wind power plants in offshore HVDC grids

    Get PDF

    Design, Control and Protection of Modular Multilevel Converter (MMC)-Based Multi-Terminal HVDC System

    Get PDF
    Even though today’s transmission grids are predominantly based on the high voltage alternating current (HVAC) scheme, interests on high voltage direct current (HVDC) are growing rapidly during the past decade, due to the increased penetration of remote renewable energy. Voltage source converter (VSC) type is preferred over the traditional line-commutated converter (LCC) for this application, due to the advantages like smaller station footprint and no need for strong interfacing ac grid. As the state-of-the-art VSC topology, modular multilevel converter (MMC) is mostly considered. Most renewable energy sources, such as wind and solar, is usually sparsely located. Multi-terminal HVDC (MTDC) provides better use of transmission infrastructure, higher transmission flexibility and reliability, than building multiple point-to-point HVDCs. This dissertation studies the MMC-based MTDC system, including design, control and protection. Passive components design methodology in MMC is developed, with practical consideration. The developed arm inductance selection criterion considers the implementation of circulating current suppression control. And the unbalanced voltage among submodule capacitor is taken into account for submodule capacitance design. Circulating current suppression control is found to impact the MMC operating range. The maximum modulation index reduction is calculated utilizing a decoupled MMC model. A four-terminal HVDC testbed is developed, with similar control and communication architectures of the practical projects implemented. Several most typical operation scenarios and controls are demonstrated or proposed. In order to allow HVDC disconnects to online trip a line, dc line current control is proposed through station control. Utilizing the dc line current control, an automatic dc line current limiting control is proposed. Both controls have been verified in the developed testbed. A systematic dc fault protection strategy of MTDC utilizing hybrid dc circuit breaker is developed, including a new fast and selective fault detection method taking advantage of the hybrid dc circuit breaker special operation mechanism. Detailed criteria and control methods to assist system recovery are presented. A novel fault tolerant MMC topology is proposed with a hybrid submodule by adding an ultra-fast mechanical switch. The converter power loss can be almost the same as the half-bridge MMC, and 1/3 reduction compared to the similar clamp-double topology

    A novel time domain protection technique for multi-terminal HVDC networks utilising travelling wave energy

    Get PDF
    Fault vulnerability and protection issues are major challenge in realising multi-terminal HVDC transmission system, also termed HVDC grids. This paper presents a novel time domain and transient based protection technique for application to HVDC grids. The technique utilises the energy of the forward and backward travelling waves produced by a fault to distinguish between internal and external faults. For an internal fault, the calculated forward or backward travelling wave energy for a pre-set time duration following the occurrence of a fault must exceed a predetermined setting otherwise the fault is external. This characteristic is largely due to the DC inductor located at the cable ends, as per HVDC breakers or fault current limiters, which provides attenuation for the high frequency transients resulting from an external fault. The ratio between the forward travelling wave energy and the backward travelling wave energy provides directional comparison. For a forward directional fault with respect to a local relay, this ratio must be less than unity whereas the ratio is greater than unity for a reverse directional fault. The simulation results presented based on full scale Modular Multilevel Converter Based HVDC grid shows the suitability of the proposed technique. An advantage of this technique is that it is non-unit based and as such no communication delay is incurred. Furthermore, it is simple as it does not require complex mathematical/DSP technique; and as such can be easily implemented at each independent relay since it will require minimal hardware resources hence reduces cost

    PI and fuzzy control strategies for high voltage output DC-DC boost power converter – hardware implementation and analysis

    Get PDF
    Abstract: This paper presents the control strategies by Proportional- Integral (P-I) and Fuzzy Logic (FL) for a DC-DC boost power converter for high output voltage configuration. Standard DC-DC converters are traditionally used for high voltage direct current (HVDC) power transmission systems. But, lack its performances in terms of efficiency, reduced transfer gain and increased cost with sensor units. Moreover, the internal self-parasitic components reduce the output voltage and efficiency of classical high voltage converters (HVC). This investigation focused on extra highvoltage (EHV) DC-DC boost power converter with inbuilt voltage-lift technique and overcome the aforementioned deficiencies. Further, the control strategy is adapted based on proportional-integral (P-I) and fuzzy logic, closed-loop controller to regulate the outputs and ensure the performances. Complete hardware prototype of EHV converter is realized and experimental tasks are set out with digital signal processor (DSP) TMS320F2812 under different perturbation conditions. Observed set of results is provided and shown good conformity with developed hypothetical predictions

    A transient based protection technique for future DC grids utilising travelling wave power

    Get PDF
    This study presents a novel time-domain protection technique for application to DC grids. The technique utilises the power developed by the forward and backward travelling waves produced by a fault to distinguish between internal and external faults. For an internal fault, the calculated travelling wave power must exceed a predetermined setting; otherwise the fault is external. The ratio between the forward travelling wave power and the backward travelling wave power provides a directional comparison. For a forward directional fault, this ratio is less than unity, whereas the ratio is greater than unity for reverse directional faults. To improve the sensitivity of the protection scheme for long-distance remote internal fault, a second element utilising the concavity of the forward travelling wave power is proposed. The proposed technique is time domain based and does not require complex mathematical burden; moreover, as such can be easily implemented since it will require fewer hardware resources. Simulations were carried out in power systems computer-aided design/electromagnetic transient simulations, and the results presented considering wider cases of fault scenarios including 500 Ω remote internal fault shows the suitability of the proposed scheme as all fault scenarios indicated were identified within 500 µs following the application of the fault

    Development and experimental validation of a reduced-scale single-phase modular multilevel converter applied to a railway static converter

    Get PDF
    With special emphasis in recent years, an increase has been verified not only in demand but also in the price of electricity, arising the need to develop more reliable and efficient electrical energy conversion systems. In this context, emerges the utilization of the modular multilevel converter (MMC) based on submodules. The key to the MMC is modularity, which allows the converter to reach higher performance levels, improving the voltage and current output signals of the converter, in a compact solution. The modularity concept allows the increase of the operation voltage using submodules in series, and the increase of the operating current using submodules in parallel. Additionally, in the event of a submodule malfunction, the converter can be reconfigured and continue the operation, albeit at a lower power level. Due to its versatility, the MMC can be used in a variety of applications, such as HVDC power transmission systems, solid-state transformers, renewable energy interfaces, and more recently, railway power systems. In this context, this paper focuses on the development and experimental validation of a single-phase MMC based on the use of half-bridge submodules applied to a railway static converter, where the main focus lies on the AC side control. The control algorithms are fully described for a single-phase MMC reduced-scale prototype implemented (500 W, 230 V–50 Hz, 200 VDC), connecting two submodules in series in the upper arm, two submodules also in series in the lower arm, the respective driver and command circuits, sensing and signal conditioning circuits, as well as a digital control platform recurring to the DSP TMS320F28379D. Experimental results were obtained to validate each submodule individually, and, later, to verify the operation of the MMC with the set of four submodules.This work has been supported by FCT–Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has been supported by the MEGASOLAR Project POCI-01-0247-FEDER-047220

    Protection and fault location schemes suited to large-scale multi-vendor high voltage direct current grids

    Get PDF
    Recent developments in voltage source converter (VSC) technology have led to an increased interest in high voltage direct current (HVDC) transmission to support the integration of massive amounts of renewable energy sources (RES) and especially, offshore wind energy. VSC-based HVDC grids are considered to be the natural evolution of existing point-to-point links and are expected to be one of the key enabling technologies towards expediting the integration and better utilisation of offshore energy, dealing with the variable nature of RES, and driving efficient energy balance over wide areas and across countries. Despite the technological advancements and the valuable knowledge gained from the operation of the already built multi-terminal systems, there are several outstanding issues that need to be resolved in order to facilitate the deployment of large-scale meshed HVDC grids. HVDC protection is of utmost importance to ensure the necessary reliability and security of HVDC grids, yet very challenging due to the fast nature of development of DC faults and the abrupt changes they cause in currents and voltages that may damage the system components. This situation is further exacerbated in highly meshed networks, where the effects of a DC fault on a single component (e.g. DC cable) can quickly propagate across the entire HVDC grid. To mitigate the effect of DC faults in large-scale meshed HVDC grids, fast and fully selective approaches using dedicated DC circuit breaker and protection relays are required. As the speed of DC fault isolation is one order of magnitude faster than typical AC protection (i.e. less than 10 ms), there is a need for the development of innovative approaches to system protection, including the design and implementation of more advanced protection algorithms. Moreover, in a multi-vendor environment (in which different or the same type of equipment is supplied by various manufacturers), the impact of the grid elements on the DC fault signature may differ considerably from case to case, thus increasing the complexity of designing reliable protection algorithms for HVDC grids. Consequently, there is a need for a more fundamental approach to the design and development of protection algorithms that will enable their general applicability. Furthermore, following successful fault clearance, the next step is to pinpoint promptly the exact location of the fault along the transmission medium in an effort to expedite inspection and repair time, reduce power outage time and elevate the total availability of the HVDC grid. Successful fault location becomes increasingly challenging in HVDC grids due to the short time windows between fault inception and fault clearance that limit the available fault data records that may be utilised for the execution of fault location methods. This thesis works towards the development of protection and fault location solutions, designed specifically for application in large-scale multi-vendor HVDC grids. First, a methodology is developed for the design of travelling wave based non-unit protection algorithms that can be easily configured for any grid topology and parameters. Second, using this methodology, a non-unit protection algorithm based on wavelet transform is developed that ensures fast, discriminative and enhanced protection performance. Besides offline simulations, the efficacy of the wavelet transform based algorithm is also demonstrated by means of real-time simulation, thereby removing key technical barriers that have impeded the use of wavelet transform in practical protection applications. Third, in an effort to reinforce the technical and economic feasibility of future HVDC grids, a thorough fault management strategy is presented for systems that employ efficient modular multilevel converters with partial fault tolerant capability. Finally, a fault location scheme is developed for accurately estimating the fault location in HVDC grids that are characterised by short post-fault data windows due to the utilisation of fast acting protection systems.Recent developments in voltage source converter (VSC) technology have led to an increased interest in high voltage direct current (HVDC) transmission to support the integration of massive amounts of renewable energy sources (RES) and especially, offshore wind energy. VSC-based HVDC grids are considered to be the natural evolution of existing point-to-point links and are expected to be one of the key enabling technologies towards expediting the integration and better utilisation of offshore energy, dealing with the variable nature of RES, and driving efficient energy balance over wide areas and across countries. Despite the technological advancements and the valuable knowledge gained from the operation of the already built multi-terminal systems, there are several outstanding issues that need to be resolved in order to facilitate the deployment of large-scale meshed HVDC grids. HVDC protection is of utmost importance to ensure the necessary reliability and security of HVDC grids, yet very challenging due to the fast nature of development of DC faults and the abrupt changes they cause in currents and voltages that may damage the system components. This situation is further exacerbated in highly meshed networks, where the effects of a DC fault on a single component (e.g. DC cable) can quickly propagate across the entire HVDC grid. To mitigate the effect of DC faults in large-scale meshed HVDC grids, fast and fully selective approaches using dedicated DC circuit breaker and protection relays are required. As the speed of DC fault isolation is one order of magnitude faster than typical AC protection (i.e. less than 10 ms), there is a need for the development of innovative approaches to system protection, including the design and implementation of more advanced protection algorithms. Moreover, in a multi-vendor environment (in which different or the same type of equipment is supplied by various manufacturers), the impact of the grid elements on the DC fault signature may differ considerably from case to case, thus increasing the complexity of designing reliable protection algorithms for HVDC grids. Consequently, there is a need for a more fundamental approach to the design and development of protection algorithms that will enable their general applicability. Furthermore, following successful fault clearance, the next step is to pinpoint promptly the exact location of the fault along the transmission medium in an effort to expedite inspection and repair time, reduce power outage time and elevate the total availability of the HVDC grid. Successful fault location becomes increasingly challenging in HVDC grids due to the short time windows between fault inception and fault clearance that limit the available fault data records that may be utilised for the execution of fault location methods. This thesis works towards the development of protection and fault location solutions, designed specifically for application in large-scale multi-vendor HVDC grids. First, a methodology is developed for the design of travelling wave based non-unit protection algorithms that can be easily configured for any grid topology and parameters. Second, using this methodology, a non-unit protection algorithm based on wavelet transform is developed that ensures fast, discriminative and enhanced protection performance. Besides offline simulations, the efficacy of the wavelet transform based algorithm is also demonstrated by means of real-time simulation, thereby removing key technical barriers that have impeded the use of wavelet transform in practical protection applications. Third, in an effort to reinforce the technical and economic feasibility of future HVDC grids, a thorough fault management strategy is presented for systems that employ efficient modular multilevel converters with partial fault tolerant capability. Finally, a fault location scheme is developed for accurately estimating the fault location in HVDC grids that are characterised by short post-fault data windows due to the utilisation of fast acting protection systems
    • …
    corecore