7,695 research outputs found

    Human behavioural analysis with self-organizing map for ambient assisted living

    Get PDF
    This paper presents a system for automatically classifying the resting location of a moving object in an indoor environment. The system uses an unsupervised neural network (Self Organising Feature Map) fully implemented on a low-cost, low-power automated home-based surveillance system, capable of monitoring activity level of elders living alone independently. The proposed system runs on an embedded platform with a specialised ceiling-mounted video sensor for intelligent activity monitoring. The system has the ability to learn resting locations, to measure overall activity levels and to detect specific events such as potential falls. First order motion information, including first order moving average smoothing, is generated from the 2D image coordinates (trajectories). A novel edge-based object detection algorithm capable of running at a reasonable speed on the embedded platform has been developed. The classification is dynamic and achieved in real-time. The dynamic classifier is achieved using a SOFM and a probabilistic model. Experimental results show less than 20% classification error, showing the robustness of our approach over others in literature with minimal power consumption. The head location of the subject is also estimated by a novel approach capable of running on any resource limited platform with power constraints

    Development of a Wireless Mobile Computing Platform for Fall Risk Prediction

    Get PDF
    Falls are a major health risk with which the elderly and disabled must contend. Scientific research on smartphone-based gait detection systems using the Internet of Things (IoT) has recently become an important component in monitoring injuries due to these falls. Analysis of human gait for detecting falls is the subject of many research projects. Progress in these systems, the capabilities of smartphones, and the IoT are enabling the advancement of sophisticated mobile computing applications that detect falls after they have occurred. This detection has been the focus of most fall-related research; however, ensuring preventive measures that predict a fall is the goal of this health monitoring system. By performing a thorough investigation of existing systems and using predictive analytics, we built a novel mobile application/system that uses smartphone and smart-shoe sensors to predict and alert the user of a fall before it happens. The major focus of this dissertation has been to develop and implement this unique system to help predict the risk of falls. We used built-in sensors --accelerometer and gyroscope-- in smartphones and a sensor embedded smart-shoe. The smart-shoe contains four pressure sensors with a Wi-Fi communication module to unobtrusively collect data. The interactions between these sensors and the user resulted in distinct challenges for this research while also creating new performance goals based on the unique characteristics of this system. In addition to providing an exciting new tool for fall prediction, this work makes several contributions to current and future generation mobile computing research

    Implementing and Evaluating a Wireless Body Sensor System for Automated Physiological Data Acquisition at Home

    Full text link
    Advances in embedded devices and wireless sensor networks have resulted in new and inexpensive health care solutions. This paper describes the implementation and the evaluation of a wireless body sensor system that monitors human physiological data at home. Specifically, a waist-mounted triaxial accelerometer unit is used to record human movements. Sampled data are transmitted using an IEEE 802.15.4 wireless transceiver to a data logger unit. The wearable sensor unit is light, small, and consumes low energy, which allows for inexpensive and unobtrusive monitoring during normal daily activities at home. The acceleration measurement tests show that it is possible to classify different human motion through the acceleration reading. The 802.15.4 wireless signal quality is also tested in typical home scenarios. Measurement results show that even with interference from nearby IEEE 802.11 signals and microwave ovens, the data delivery performance is satisfactory and can be improved by selecting an appropriate channel. Moreover, we found that the wireless signal can be attenuated by housing materials, home appliances, and even plants. Therefore, the deployment of wireless body sensor systems at home needs to take all these factors into consideration.Comment: 15 page

    Detecting Falls with Wearable Sensors Using Machine Learning Techniques

    Get PDF
    Cataloged from PDF version of article.Falls are a serious public health problem and possibly life threatening for people in fall risk groups. We develop an automated fall detection system with wearable motion sensor units fitted to the subjects' body at six different positions. Each unit comprises three tri-axial devices (accelerometer, gyroscope, and magnetometer/compass). Fourteen volunteers perform a standardized set of movements including 20 voluntary falls and 16 activities of daily living (ADLs), resulting in a large dataset with 2520 trials. To reduce the computational complexity of training and testing the classifiers, we focus on the raw data for each sensor in a 4 s time window around the point of peak total acceleration of the waist sensor, and then perform feature extraction and reduction. Most earlier studies on fall detection employ rule-based approaches that rely on simple thresholding of the sensor outputs. We successfully distinguish falls from ADLs using six machine learning techniques (classifiers): the k-nearest neighbor (k-NN) classifier, least squares method (LSM), support vector machines (SVM), Bayesian decision making (BDM), dynamic time warping (DTW), and artificial neural networks (ANNs). We compare the performance and the computational complexity of the classifiers and achieve the best results with the k-NN classifier and LSM, with sensitivity, specificity, and accuracy all above 99%. These classifiers also have acceptable computational requirements for training and testing. Our approach would be applicable in real-world scenarios where data records of indeterminate length, containing multiple activities in sequence, are recorded

    Fall detection with wearable sensors - SAFE (SmArt Fall dEtection)

    Get PDF

    Central monitoring system for ambient assisted living

    Get PDF
    Smart homes for aged care enable the elderly to stay in their own homes longer. By means of various types of ambient and wearable sensors information is gathered on people living in smart homes for aged care. This information is then processed to determine the activities of daily living (ADL) and provide vital information to carers. Many examples of smart homes for aged care can be found in literature, however, little or no evidence can be found with respect to interoperability of various sensors and devices along with associated functions. One key element with respect to interoperability is the central monitoring system in a smart home. This thesis analyses and presents key functions and requirements of a central monitoring system. The outcomes of this thesis may benefit developers of smart homes for aged care

    RGB-D-based Action Recognition Datasets: A Survey

    Get PDF
    Human action recognition from RGB-D (Red, Green, Blue and Depth) data has attracted increasing attention since the first work reported in 2010. Over this period, many benchmark datasets have been created to facilitate the development and evaluation of new algorithms. This raises the question of which dataset to select and how to use it in providing a fair and objective comparative evaluation against state-of-the-art methods. To address this issue, this paper provides a comprehensive review of the most commonly used action recognition related RGB-D video datasets, including 27 single-view datasets, 10 multi-view datasets, and 7 multi-person datasets. The detailed information and analysis of these datasets is a useful resource in guiding insightful selection of datasets for future research. In addition, the issues with current algorithm evaluation vis-\'{a}-vis limitations of the available datasets and evaluation protocols are also highlighted; resulting in a number of recommendations for collection of new datasets and use of evaluation protocols
    • …
    corecore