49 research outputs found

    Distributing Cyber-Physical Systems Simulation: The Satellite Constellation Case

    Get PDF
    The goal of this position paper is to contribute for the improving of Cyber-Physical System (CPS) simulations by introducing distribution. CPS use computations andcommunication tightly interacting with physical processes. So a CPS simulation needs to tackle with three kinds of simulations: the computational simulation, the physical simulation, and the communication simulation. In this paper, we will focus on the communication simulation, and its interaction with the two others simulations. We will draw a landscape of the existing concepts and technologies for distributing communication simulation, and then propose an architecture for interacting with the whole CPS simulation. We will apply this architecture to a simulation of a satellite constellation, where satellites can be simulated with different levels of precision, from the simple generic mathematical model to the heavy-featured CPS simulation

    A Simulation Tool Chain for Investigating Future V2X-based Automotive E/E Architectures

    Get PDF
    Due to the evermore rising number of functions, current E/E architectures are more and more a vulnerable source for faults and a barrier to innovation. This situation is aggravated by the integration of new technologies like Vehicle-to-X Communication (V2XC) which form the basis for a large number of future services and applications. At the same time, this “opening” of the E/E architecture to the outside world increases potential for non-deterministic disturbances. In order to overcome the limitations of current E/E architectures, application of new design principles and methodologies is necessary. Platform-based design (PBD) is a promising solution for the development of safety-critical functions, to increase reliability and to reduce development cost. Within this context, we propose a novel extensible tool chain that targets the facilitation of exploration, validation and verification of future V2X-based automotive E/E architectures. The tool chain supports composition of heterogeneous domain-specific models by integrating a heterogeneous modeling tool with a simulation middleware and serves as starting point for the investigation of PBD concepts in the V2X context. We believe that the tool chain can support modeling and validation of future V2X-based E/E architectures. In the final paper, we will evaluate the proposed approach by means of a case study regarding validation capabilities as well as execution performance

    Future Perspectives of Co-Simulation in the Smart Grid Domain

    Full text link
    The recent attention towards research and development in cyber-physical energy systems has introduced the necessity of emerging multi-domain co-simulation tools. Different educational, research and industrial efforts have been set to tackle the co-simulation topic from several perspectives. The majority of previous works has addressed the standardization of models and interfaces for data exchange, automation of simulation, as well as improving performance and accuracy of co-simulation setups. Furthermore, the domains of interest so far have involved communication, control, markets and the environment in addition to physical energy systems. However, the current characteristics and state of co-simulation testbeds need to be re-evaluated for future research demands. These demands vary from new domains of interest, such as human and social behavior models, to new applications of co-simulation, such as holistic prognosis and system planning. This paper aims to formulate these research demands that can then be used as a road map and guideline for future development of co-simulation in cyber-physical energy systems

    A Symbiotic Approach to Designing Cross-Layer QoS in Embedded Real-Time Systems

    Get PDF
    International audienceNowadays there is an increasing need for embedded systems to support intensive computing while maintaining traditional hard real-time and fault-tolerant properties. Extending the principle of multi-core systems, we are exploring the use of distributed processing units interconnected via a high performance mesh network as a way of supporting distributed real-time applications. Fault-tolerance can then be ensured through dynamic allocation of both computing and communication resources. We postulate that enhancing QoS (Quality of Service) for real-time applications entails the development of a cross-layer support of high-level requirements, thus requiring a deep knowledge of the underlying networks. In this paper, we propose a new simulation/emulation/experimentation framework, ERICA, for designing such a feature. ERICA integrates both a network simulator and an actual hardware network to allow implementation and evaluation of different QoS-guaranteeing mechanisms. It also supports real-software-in-the-loop, i.e. running of real applications and middleware over these networks. Each component can evolve separately or together in a symbiotic manner, also making teamwork more flexible. We present in more detail our discrete-event simulation approach and the in-silicon implementation with which we cross-check our solutions in order to bring real performance aspects to our work. We also discuss the challenges of running real-software-in-the-loop in a real-time context, i.e. how to bridge it with a network simulator, and how to deal with time consistency

    Co-Simulation of Cyber-Physical System with Distributed Embedded Control

    Get PDF

    Parallele und kooperative Simulation fĂĽr eingebettete Multiprozessorsysteme

    Get PDF
    Die Entwicklung von eingebetteten Systemen wird durch die stetig steigende Anzahl und Integrationsdichte neuer Funktionen in Kombination mit einem erhöhten Interaktionsgrad zunehmend zur Herausforderung. Vor diesem Hintergrund werden in dieser Arbeit Methoden zur SystemC-basierten parallelen Simulation von Multiprozessorsystemen auf Manycore Architekturen sowie zur Verbesserung der Interoperabilität zwischen heterogenen Simulationswerkzeugen entwickelt, experimentell untersucht und bewertet

    Large-Scale Integration of Heterogeneous Simulations

    Get PDF

    RTLabOS Feasibility Studies

    Get PDF
    corecore