447 research outputs found

    Efficient Solvers for the Phase-Field Crystal Equation: Development and Analysis of a Block-Preconditioner

    Get PDF
    A preconditioner to improve the convergence properties of Krylov subspace solvers is derived and analyzed in this work. This method is adapted to linear systems arising from a finite-element discretization of a phase-field crystal equation

    A Robust Solver for a Second Order Mixed Finite Element Method for the Cahn-Hilliard Equation

    Get PDF
    We develop a robust solver for a second order mixed finite element splitting scheme for the Cahn-Hilliard equation. This work is an extension of our previous work in which we developed a robust solver for a first order mixed finite element splitting scheme for the Cahn-Hilliard equaion. The key ingredient of the solver is a preconditioned minimal residual algorithm (with a multigrid preconditioner) whose performance is independent of the spacial mesh size and the time step size for a given interfacial width parameter. The dependence on the interfacial width parameter is also mild.Comment: 17 pages, 3 figures, 4 tables. arXiv admin note: substantial text overlap with arXiv:1709.0400

    An efficient numerical framework for the amplitude expansion of the phase-field crystal model

    Full text link
    The study of polycrystalline materials requires theoretical and computational techniques enabling multiscale investigations. The amplitude expansion of the phase field crystal model (APFC) allows for describing crystal lattice properties on diffusive timescales by focusing on continuous fields varying on length scales larger than the atomic spacing. Thus, it allows for the simulation of large systems still retaining details of the crystal lattice. Fostered by the applications of this approach, we present here an efficient numerical framework to solve its equations. In particular, we consider a real space approach exploiting the finite element method. An optimized preconditioner is developed in order to improve the convergence of the linear solver. Moreover, a mesh adaptivity criterion based on the local rotation of the polycrystal is used. This results in an unprecedented capability of simulating large, three-dimensional systems including the dynamical description of the microstructures in polycrystalline materials together with their dislocation networks.Comment: 12 pages, 7 figure

    Quantum Chemistry for Solvated Molecules on Graphical Processing Units Using Polarizable Continuum Models

    Get PDF
    The conductor-like polarization model (C-PCM) with switching/Gaussian smooth discretization is a widely used implicit solvation model in chemical simulations. However, its application in quantum mechanical calculations of large-scale biomolecular systems can be limited by computational expense of both the gas phase electronic structure and the solvation interaction. We have previously used graphical processing units (GPUs) to accelerate the first of these steps. Here, we extend the use of GPUs to accelerate electronic structure calculations including C-PCM solvation. Implementation on the GPU leads to significant acceleration of the generation of the required integrals for C-PCM. We further propose two strategies to improve the solution of the required linear equations: a dynamic convergence threshold and a randomized block-Jacobi preconditioner. These strategies are not specific to GPUs and are expected to be beneficial for both CPU and GPU implementations. We benchmark the performance of the new implementation using over 20 small proteins in solvent environment. Using a single GPU, our method evaluates the C-PCM related integrals and their derivatives more than 10× faster than that with a conventional CPU-based implementation. Our improvements to the linear solver provide a further 3× acceleration. The overall calculations including C-PCM solvation require, typically, 20–40% more effort than that for their gas phase counterparts for a moderate basis set and molecule surface discretization level. The relative cost of the C-PCM solvation correction decreases as the basis sets and/or cavity radii increase. Therefore, description of solvation with this model should be routine. We also discuss applications to the study of the conformational landscape of an amyloid fibril.United States. Office of Naval Research (N00014-14-1-0590

    Modelling the optics of high resolution liquid crystal devices by the finite differences in the frequency domain method

    Get PDF
    A procedure combining accurate liquid crystal and electromagnetic modelling is developed for the analysis of wave propagation through liquid crystal devices. This is required to study the optics of high resolution liquid crystal cells or cells containing very small features, where diffraction effects occur. It is also necessary for the study of optical waveguiding devices using liquid crystal as variable permittivity substrates. An accurate finite element modelling program is used to find the permittivity tensor distribution, which is then used to find the response of the device to an excitation electromagnetic field by means of a finite difference in the frequency domain (FDFD) approach
    • …
    corecore