30,495 research outputs found

    Challenges in Complex Systems Science

    Get PDF
    FuturICT foundations are social science, complex systems science, and ICT. The main concerns and challenges in the science of complex systems in the context of FuturICT are laid out in this paper with special emphasis on the Complex Systems route to Social Sciences. This include complex systems having: many heterogeneous interacting parts; multiple scales; complicated transition laws; unexpected or unpredicted emergence; sensitive dependence on initial conditions; path-dependent dynamics; networked hierarchical connectivities; interaction of autonomous agents; self-organisation; non-equilibrium dynamics; combinatorial explosion; adaptivity to changing environments; co-evolving subsystems; ill-defined boundaries; and multilevel dynamics. In this context, science is seen as the process of abstracting the dynamics of systems from data. This presents many challenges including: data gathering by large-scale experiment, participatory sensing and social computation, managing huge distributed dynamic and heterogeneous databases; moving from data to dynamical models, going beyond correlations to cause-effect relationships, understanding the relationship between simple and comprehensive models with appropriate choices of variables, ensemble modeling and data assimilation, modeling systems of systems of systems with many levels between micro and macro; and formulating new approaches to prediction, forecasting, and risk, especially in systems that can reflect on and change their behaviour in response to predictions, and systems whose apparently predictable behaviour is disrupted by apparently unpredictable rare or extreme events. These challenges are part of the FuturICT agenda

    Predictability of catastrophic events: material rupture, earthquakes, turbulence, financial crashes and human birth

    Full text link
    We propose that catastrophic events are "outliers" with statistically different properties than the rest of the population and result from mechanisms involving amplifying critical cascades. Applications and the potential for prediction are discussed in relation to the rupture of composite materials, great earthquakes, turbulence and abrupt changes of weather regimes, financial crashes and human parturition (birth).Comment: Latex document of 22 pages including 6 ps figures, in press in PNA

    Addressing Catastrophic Risks: Disparate Anatomies Require Tailored Therapies

    Get PDF
    Catastrophic risks differ in terms of their natural or human origins, their possible amplification by human behaviors, and the relationships between those who create the risks and those who suffer the losses. Given their disparate anatomies, catastrophic risks generally require tailored therapies, with each prescribed therapy employing a specific portfolio of policy strategies. Given that catastrophic risks occur rarely, and impose extreme losses, traditional mechanisms for controlling risks--bargaining, regulation, liability--often function poorly. Commons catastrophes arise when a group of actors collectively impose such risks on themselves. When the commons is balanced, that is, when the parties are roughly symmetrically situated, a range of regulatory mechanisms can perform well. However, unbalanced commons--such as exist with climate change--will challenge any control mechanism with the disparate parties putting forth proposals to limit their own burdens. When humans impose catastrophic risks predominantly on others--as with deepwater oil spills--the risks are external. For those risks, the analysis shows, a single responsible party should be identified. Primary emphasis should then be placed on a two-tier liability system. Parties engaged in activities posing such catastrophic risks would be subject to substantial minimum financial requirements, strict liability for all damages, and a risk-based tax for expected losses that would exceed the responsible party's ability to pay. Utilizing the financial incentives of this two-tier liability system would decrease the current reliance on regulatory policy, and would alter the role of regulators with a tilt toward financial oversight efforts and away from direct control. Catastrophic risks will always be with us. But as rare, extreme events, society has little experience with them, and current mechanisms are poorly designed to control them. Only a tailored therapy approach offers promise of significant improvement.

    Part 3: Systemic risk in ecology and engineering

    Get PDF
    The Federal Reserve Bank of New York released a report -- New Directions for Understanding Systemic Risk -- that presents key findings from a cross-disciplinary conference that it cosponsored in May 2006 with the National Academy of Sciences' Board on Mathematical Sciences and Their Applications. ; The pace of financial innovation over the past decade has increased the complexity and interconnectedness of the financial system. This development is important to central banks, such as the Federal Reserve, because of their traditional role in addressing systemic risks to the financial system. ; To encourage innovative thinking about systemic issues, the New York Fed partnered with the National Academy of Sciences to bring together more than 100 experts on systemic risk from 22 countries to compare cross-disciplinary perspectives on monitoring, addressing and preventing this type of risk. ; This report, released as part of the Bank's Economic Policy Review series, outlines some of the key points concerning systemic risk made by the various disciplines represented - including economic research, ecology, physics and engineering - as well as presentations on market-oriented models of financial crises, and systemic risk in the payments system and the interbank funds market. The report concludes with observations gathered from the sessions and a discussion of potential applications to policy. ; The three papers presented in this conference session highlighted the positive feedback effects that produce herdlike behavior in markets, and the subsequent discussion focused in part on means of encouraging heterogeneous investment strategies to counter such behavior. Participants in the session also discussed the types of models used to study systemic risk and commented on the challenges and trade-offs researchers face in developing their models.Financial risk management ; Financial markets ; Financial stability ; Financial crises

    Fire Immediate Response System Workshop Report

    Get PDF
    California's recent wildfires, exacerbated by extreme weather conditions, have focused the nation's attention on the problem of managing fire at the wildland urban interface. With the goal of understanding how new or re-imagined technologies could improve early fire detection and response, the Gordon and Betty Moore Foundation hosted a "Fire Immediate Response System" workshop (April 24 -26, 2019). The workshop identified the following priorities and recommendations, which are described in detail in the report.* Develop a shared, integrated platform for diverse sources of data, intelligence and information* Conduct new wildfire risk assessments with high-resolution mapping technologies* Improve scientific understanding of "megafires" through retrospective analysis* Enhance fire behavior models and associated inputs for real-time prediction* Perform a cost-benefit analysis of investment in solutions vs. reactive management* Target investments in the development and adoption of new technologies* Expand multi-stakeholder dialogue, collaboration and actio

    Climate Change, Insurability of Large-scale Disasters and the Emerging Liability Challenge

    Get PDF
    This paper focuses on the interaction between uncertainty and insurability in the context of some of the risks associated with climate change. It discusses the evolution of insured losses due to weather-related disasters over the past decade, and the key drivers of the sharp increases in both economic and insured catastrophe losses over the past 20 years. In particular we examine the impact of development in hazard-prone areas and of global warming on the potential for catastrophic losses in the future. In this context we discuss the implications for insurance risk capital and the capacity of the insurance industry to handle large-scale events. A key question that needs to be addressed is the factors that determine the insurability of a risk and the extent of coverage offered by the private sector to provide protection against extreme events where there is significant uncertainty surrounding the probability and consequences of a catastrophic loss. We discuss the concepts of insurability by focusing on coverage for natural hazards, such as earthquakes, hurricanes and floods. The paper also focuses on the liability issues associated with global climate change, and possible implications for insurers (including D&O), given the difficulty in identifying potential defendants, tracing harm to their actions and apportioning damages among them. The paper concludes by suggesting ways that insurers can help mitigate future damages from global climate change by providing premium reductions and rate credits to companies investing in risk-reducing measures.
    • …
    corecore