5,708 research outputs found

    Emerging Applications of Liquid Crystals Based on Nanotechnology.

    Get PDF
    Diverse functionalities of liquid crystals (LCs) offer enormous opportunities for their potential use in advanced mobile and smart displays, as well as novel non-display applications. Here, we present snapshots of the research carried out on emerging applications of LCs ranging from electronics to holography and self-powered systems. In addition, we will show our recent results focused on the development of new LC applications, such as programmable transistors, a transparent and active-type two-dimensional optical array and self-powered display systems based on LCs, and will briefly discuss their novel concepts and basic operating principles. Our research will give insights not only into comprehensively understanding technical and scientific applications of LCs, but also developing new discoveries of other LC-based devices

    2D Material Liquid Crystals for Optoelectronics and Photonics

    Get PDF
    This is the author accepted manuscript. The final version is available from Royal Society of Chemistry via the DOI in this record.The merging of the materials science paradigms of liquid crystals and 2D materials promises superb new opportunities for the advancement of the fields of optoelectronics and photonics. In this review, we summarise the development of 2D material liquid crystals by two different methods; dispersion of 2D materials in a liquid crystalline host and the liquid crystal phase arising from dispersions of 2D material flakes in organic solvents. The properties of liquid crystal phases that make them so attractive for optoelectronics and photonics applications are discussed. The processing of 2D materials to allow for the development of 2D material liquid crystals is also considered. An emphasis is placed on the applications of such materials; from the development of films, fibers and membranes to display applications, optoelectronic devices and quality control of synthetic processes.We acknowledge financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom via the EPSRC Centre for Doctoral Training in Electromagnetic Metamaterials (Grant No. EP/L015331/1) and via Grant Nos. EP/N035569/1, EP/G036101/1 and EP/M002438/1

    Inkjet printing of functional materials for optical and photonic applications

    Get PDF
    Inkjet printing, traditionally used in graphics, has been widely investigated as a valuable tool in the preparation of functional surfaces and devices. This review focuses on the use of inkjet printing technology for the manufacturing of different optical elements and photonic devices. The presented overview mainly surveys work done in the fabrication of micro-optical components such as microlenses, waveguides and integrated lasers; the manufacturing of large area light emitting diodes displays, liquid crystal displays and solar cells; as well as the preparation of liquid crystal and colloidal crystal based photonic devices working as lasers or optical sensors. Special emphasis is placed on reviewing the materials employed as well as in the relevance of inkjet in the manufacturing of the different devices showing in each of the revised technologies, main achievements, applications and challenges

    Characteristics of Two-Dimensional Triangular and Three-Dimensional Face-Centered-Cubic Photonic Crystals

    Get PDF
    The fabrication of photonic crystals (PhC) with photonic band gaps (PBG) in the visible range is a difficult task due to the small structural feature sizes of the PhC. The particular type of PhC examined is a two-dimensional (2-D) triangular structure with a PBG designed for visible wavelengths with applications in visible integrated photonic systems. This work examines the processes involved and viability of fabricating 2-D triangular PhC\u27s by a variety of techniques: focused ion beam, electron lithography and holographic photo-polymerization/lithography. The design of the PhC was based on a program created to display gap maps for triangular structures. The PBG of the structure designed from the gap maps was then modeled using another program created to display band diagrams for triangular PhC structures. The fabrication techniques and materials used to create the PhC in part determine the characterization technique required to investigate the PBG. Techniques used here include the coupling of a beam by means of a prism into a wave-guiding medium and edge firing. Two commercial FDTD modeling programs were evaluated. Finally, FDTD modeling and simulation results are compared to the design and experimental results. Experimental techniques and results, along with modeling and simulation results, will be discussed

    Ancient and historical systems

    Get PDF

    NASA SBIR abstracts of 1991 phase 1 projects

    Get PDF
    The objectives of 301 projects placed under contract by the Small Business Innovation Research (SBIR) program of the National Aeronautics and Space Administration (NASA) are described. These projects were selected competitively from among proposals submitted to NASA in response to the 1991 SBIR Program Solicitation. The basic document consists of edited, non-proprietary abstracts of the winning proposals submitted by small businesses. The abstracts are presented under the 15 technical topics within which Phase 1 proposals were solicited. Each project was assigned a sequential identifying number from 001 to 301, in order of its appearance in the body of the report. Appendixes to provide additional information about the SBIR program and permit cross-reference of the 1991 Phase 1 projects by company name, location by state, principal investigator, NASA Field Center responsible for management of each project, and NASA contract number are included

    Structural Analysis of Nano Core PCF With Fused Cladding for Supercontinuum Generation in 6G Networks

    Get PDF
    The Sixth Generation (6G) networks have identified the use of frequency range between 95 GHz and 3 THz with a targeted data rate of 1 Terabytes/second at the access network for holographic video applications. As is demands broadening of spectrum at the core network, this paper proposes a Supercontinuum Generation (SCG) through photonic crystal fiber (PCF) as it provides excellent broadening of the optical spectrum. Discussed in the paper is supercontinuum generation at high pumping power as per the standards specified by the International Telecommunications Union. The proposed PCF is designed with silicon nanocrystal core and the cladding microstructures is arranged in a fusion approach to effectively optimize the optical parameters such as dispersion, nonlinearity, birefringence, group-velocity dispersion, and confinement loss. The fused cladding comprises of a flower-cladding assembly in which air-holes arrangement is inspired from petals in a pleated structure. Such arrangement is shown here to provide high nonlinearity and negative dispersion for high power supercontinuum generation. The novel nanocore assembly with improved structural constraints delivers a non-linearity of 6.37 × 106 W−1 km−1 and a negative dispersion of −142.1 (ps/nm-km) at 1,550 nm. Moreover, a supercontinuum spectrum is generated using different pulse widths ranging from 350 to 650 ps with 25 kW pump power for PCF lengths of 10 and 15 mm

    Advances in Optofluidics

    Get PDF
    Optofluidics a niche research field that integrates optics with microfluidics. It started with elegant demonstrations of the passive interaction of light and liquid media such as liquid waveguides and liquid tunable lenses. Recently, the optofluidics continues the advance in liquid-based optical devices/systems. In addition, it has expanded rapidly into many other fields that involve lightwave (or photon) and liquid media. This Special Issue invites review articles (only review articles) that update the latest progress of the optofluidics in various aspects, such as new functional devices, new integrated systems, new fabrication techniques, new applications, etc. It covers, but is not limited to, topics such as micro-optics in liquid media, optofluidic sensors, integrated micro-optical systems, displays, optofluidics-on-fibers, optofluidic manipulation, energy and environmental applciations, and so on

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected
    corecore