26,690 research outputs found

    Hack Weeks as a model for Data Science Education and Collaboration

    Full text link
    Across almost all scientific disciplines, the instruments that record our experimental data and the methods required for storage and data analysis are rapidly increasing in complexity. This gives rise to the need for scientific communities to adapt on shorter time scales than traditional university curricula allow for, and therefore requires new modes of knowledge transfer. The universal applicability of data science tools to a broad range of problems has generated new opportunities to foster exchange of ideas and computational workflows across disciplines. In recent years, hack weeks have emerged as an effective tool for fostering these exchanges by providing training in modern data analysis workflows. While there are variations in hack week implementation, all events consist of a common core of three components: tutorials in state-of-the-art methodology, peer-learning and project work in a collaborative environment. In this paper, we present the concept of a hack week in the larger context of scientific meetings and point out similarities and differences to traditional conferences. We motivate the need for such an event and present in detail its strengths and challenges. We find that hack weeks are successful at cultivating collaboration and the exchange of knowledge. Participants self-report that these events help them both in their day-to-day research as well as their careers. Based on our results, we conclude that hack weeks present an effective, easy-to-implement, fairly low-cost tool to positively impact data analysis literacy in academic disciplines, foster collaboration and cultivate best practices.Comment: 15 pages, 2 figures, submitted to PNAS, all relevant code available at https://github.com/uwescience/HackWeek-Writeu

    Implementing Generalized Empirical Method in Neuroscience by Functionally Ordering Tasks

    Get PDF
    This article outlines a method of collaboration that will manifest a high probability of cumulative and progressive results in science. The method will accomplish this through a division of labour grounded in the order of occurrence of human cognitional operations. The following article explores the possibility of a method known as functional specialization, distinct tasks presently operative in neuroscience. Functional specialization will enhance collaboration within a science as well as initiate implementation of generalized empirical method. Implementation of generalized empirical method will be achieved through the focus of individual specialties on specific mental operations

    E-infrastructures fostering multi-centre collaborative research into the intensive care management of patients with brain injury

    Get PDF
    Clinical research is becoming ever more collaborative with multi-centre trials now a common practice. With this in mind, never has it been more important to have secure access to data and, in so doing, tackle the challenges of inter-organisational data access and usage. This is especially the case for research conducted within the brain injury domain due to the complicated multi-trauma nature of the disease with its associated complex collation of time-series data of varying resolution and quality. It is now widely accepted that advances in treatment within this group of patients will only be delivered if the technical infrastructures underpinning the collection and validation of multi-centre research data for clinical trials is improved. In recognition of this need, IT-based multi-centre e-Infrastructures such as the Brain Monitoring with Information Technology group (BrainIT - www.brainit.org) and Cooperative Study on Brain Injury Depolarisations (COSBID - www.cosbid.de) have been formed. A serious impediment to the effective implementation of these networks is access to the know-how and experience needed to install, deploy and manage security-oriented middleware systems that provide secure access to distributed hospital based datasets and especially the linkage of these data sets across sites. The recently funded EU framework VII ICT project Advanced Arterial Hypotension Adverse Event prediction through a Novel Bayesian Neural Network (AVERT-IT) is focused upon tackling these challenges. This chapter describes the problems inherent to data collection within the brain injury medical domain, the current IT-based solutions designed to address these problems and how they perform in practice. We outline how the authors have collaborated towards developing Grid solutions to address the major technical issues. Towards this end we describe a prototype solution which ultimately formed the basis for the AVERT-IT project. We describe the design of the underlying Grid infrastructure for AVERT-IT and how it will be used to produce novel approaches to data collection, data validation and clinical trial design is also presented

    1st INCF Workshop on Global Portal Services for Neuroscience

    Get PDF
    The goal of this meeting was to map out existing portal services for neuroscience, identify their features and future plans, and outline opportunities for synergistic developments. The workshop discussed alternative formats of future global and integrated portal services

    Development of PancRISK, a urine biomarker-based risk score for stratified screening of pancreatic cancer patients

    Get PDF
    © The Author(s) 2019. Published by Springer Nature on behalf of Cancer Research UK.BACKGROUND: An accurate and simple risk prediction model that would facilitate earlier detection of pancreatic adenocarcinoma (PDAC) is not available at present. In this study, we compare different algorithms of risk prediction in order to select the best one for constructing a biomarker-based risk score, PancRISK. METHODS: Three hundred and seventy-nine patients with available measurements of three urine biomarkers, (LYVE1, REG1B and TFF1) using retrospectively collected samples, as well as creatinine and age, were randomly split into training and validation sets, following stratification into cases (PDAC) and controls (healthy patients). Several machine learning algorithms were used, and their performance characteristics were compared. The latter included AUC (area under ROC curve) and sensitivity at clinically relevant specificity. RESULTS: None of the algorithms significantly outperformed all others. A logistic regression model, the easiest to interpret, was incorporated into a PancRISK score and subsequently evaluated on the whole data set. The PancRISK performance could be even further improved when CA19-9, commonly used PDAC biomarker, is added to the model. CONCLUSION: PancRISK score enables easy interpretation of the biomarker panel data and is currently being tested to confirm that it can be used for stratification of patients at risk of developing pancreatic cancer completely non-invasively, using urine samples.Peer reviewe

    Biomedical Informatics Applications for Precision Management of Neurodegenerative Diseases

    Get PDF
    Modern medicine is in the midst of a revolution driven by “big data,” rapidly advancing computing power, and broader integration of technology into healthcare. Highly detailed and individualized profiles of both health and disease states are now possible, including biomarkers, genomic profiles, cognitive and behavioral phenotypes, high-frequency assessments, and medical imaging. Although these data are incredibly complex, they can potentially be used to understand multi-determinant causal relationships, elucidate modifiable factors, and ultimately customize treatments based on individual parameters. Especially for neurodegenerative diseases, where an effective therapeutic agent has yet to be discovered, there remains a critical need for an interdisciplinary perspective on data and information management due to the number of unanswered questions. Biomedical informatics is a multidisciplinary field that falls at the intersection of information technology, computer and data science, engineering, and healthcare that will be instrumental for uncovering novel insights into neurodegenerative disease research, including both causal relationships and therapeutic targets and maximizing the utility of both clinical and research data. The present study aims to provide a brief overview of biomedical informatics and how clinical data applications such as clinical decision support tools can be developed to derive new knowledge from the wealth of available data to advance clinical care and scientific research of neurodegenerative diseases in the era of precision medicine

    Ethical Reflections of Human Brain Research and Smart Information Systems

    Get PDF
    open access journalThis case study explores ethical issues that relate to the use of Smart Infor-mation Systems (SIS) in human brain research. The case study is based on the Human Brain Project (HBP), which is a European Union funded project. The project uses SIS to build a research infrastructure aimed at the advancement of neuroscience, medicine and computing. The case study was conducted to assess how the HBP recognises and deal with ethical concerns relating to the use of SIS in human brain research. To under-stand some of the ethical implications of using SIS in human brain research, data was collected through a document review and three semi-structured interviews with partic-ipants from the HBP. Results from the case study indicate that the main ethical concerns with the use of SIS in human brain research include privacy and confidentiality, the security of personal data, discrimination that arises from bias and access to the SIS and their outcomes. Furthermore, there is an issue with the transparency of the processes that are involved in human brain research. In response to these issues, the HBP has put in place different mechanisms to ensure responsible research and innovation through a dedicated pro-gram. The paper provides lessons for the responsible implementation of SIS in research, including human brain research and extends some of the mechanisms that could be employed by researchers and developers of SIS for research in addressing such issues

    Where Participatory Approaches Meet Pragmatism in Funded (Health) Research: The Challenge of Finding Meaningful Spaces

    Get PDF
    The term participatory research is now widely used as a way of categorising research that has moved beyond researching "on" to researching "with" participants. This paper draws attention to some confusions that lie behind such categorisation and the potential impact of those confusions on qualitative participatory research in practice. It illuminates some of the negative effects of "fitting in" to spaces devised by other types of research and highlights the importance of forging spaces for presenting participatory research designs that suit a discursive approach and that allow the quality and impact of such research to be recognised. The main contention is that the adoption of a variety of approaches and purposes is part of the strength of participatory research but that to date the paradigm has not been sufficiently articulated. Clarifying the unifying features of the participatory paradigm and shaping appropriate ways for critique could support the embedding of participatory research into research environments, funding schemes and administration in a way that better reflects the nature and purpose of authentic involvement
    corecore