2,136 research outputs found

    Extending Nunchaku to Dependent Type Theory

    Get PDF
    Nunchaku is a new higher-order counterexample generator based on a sequence of transformations from polymorphic higher-order logic to first-order logic. Unlike its predecessor Nitpick for Isabelle, it is designed as a stand-alone tool, with frontends for various proof assistants. In this short paper, we present some ideas to extend Nunchaku with partial support for dependent types and type classes, to make frontends for Coq and other systems based on dependent type theory more useful.Comment: In Proceedings HaTT 2016, arXiv:1606.0542

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Specifying Reusable Components

    Full text link
    Reusable software components need expressive specifications. This paper outlines a rigorous foundation to model-based contracts, a method to equip classes with strong contracts that support accurate design, implementation, and formal verification of reusable components. Model-based contracts conservatively extend the classic Design by Contract with a notion of model, which underpins the precise definitions of such concepts as abstract equivalence and specification completeness. Experiments applying model-based contracts to libraries of data structures suggest that the method enables accurate specification of practical software

    Program Analysis Scenarios in Rascal

    Get PDF
    Rascal is a meta programming language focused on the implementation of domain-specific languages and on the rapid construction of tools for software analysis and software transformation. In this paper we focus on the use of Rascal for software analysis. We illustrate a range of scenarios for building new software analysis tools through a number of examples, including one showing integration with an existing Maude-based analysis. We then focus on ongoing work on alias analysis and type inference for PHP, showing how Rascal is being used, and sketching a hypothetical solution in Maude. We conclude with a high-level discussion on the commonalities and differences between Rascal and Maude when applied to program analysis

    Automatic generation of language-based tools using the LISA system

    Get PDF
    Many tools have been constructed using different formal methods to process various parts of a language specification (e.g. scanner generators, parser generators and compiler generators). The automatic generation of a complete compiler was the primary goal of such systems, but researchers recognised the possibility that many other language-based tools could be generated from formal language specifications. Such tools can be generated automatically whenever they can be described by a generic fixed part that traverses the appropriate data structures generated by a specific variable part, which can be systematically derivable from the language specifications. The paper identifies generic and specific parts for various language-based tools. Several language-based tools are presented in the paper, which are automatically generated using an attribute grammar-based compiler generator called LISA. The generated tools that are described in the paper include editors, inspectors, debuggers and visualisers/animators. Because of their complexity of construction, special emphasis is given to visualisers/animators, and the unique contribution of our approach toward generating such tools.GRICES -MCTE

    Algebraic specifications and refinement for component-based development using RAISE

    Get PDF
    There are two main activities in Component-Based Development: component development, where we build libraries for general use, and component integration, where we assemble an application from existing components. In this work, we analyze how to apply algebraic specifications with refinement to component development. So we restrict our research to the use of modules that are described as class expressions in a formal specification language, and we present several refinement steps for component development, introducing in each one design decisions and implementation details. This evolution starts from the initial specification of a component as an abstract module, and finishes with the final deployment as fully implemented code. The usage of formal tools helps to assure the correctness of each step, and provides the ground to introduce complementarytechniques, such as bisimulations, for the process of component integration.Facultad de Informátic
    • …
    corecore