31 research outputs found

    Social relationship based routing for delay tolerant Bluetooth-enabled PSN communications

    Get PDF
    PhDOpportunistic networking is a concept derived from the mobile ad hoc networking in which devices have no prior knowledge of routes to the intended destinations. Content dissemination in opportunistic networks thus is carried out in a store and forward fashion. Opportunistic routing poses distinct challenges compared to the traditional networks such as Internet and mobile ad hoc networks where nodes have prior knowledge of the routes to the intended destinations. Information dissemination in opportunistic networks requires dealing with intermittent connectivity, variable delays, short connection durations and dynamic topology. Addressing these challenges becomes a significant motivation for developing novel applications and protocols for information dissemination in opportunistic networks. This research looks at opportunistic networking, specifically at networks composed of mobile devices or, pocket switched networks. Mobile devices are now accepted as an integral part of society and are often equipped with Bluetooth capabilities that allow for opportunistic information sharing between devices. The ad hoc nature of opportunistic networks means nodes have no advance routing knowledge and this is key challenge. Human social relationships are based on certain patterns that can be exploited to make opportunistic routing decisions. Targeting nodes that evidence high popularity or high influence can enable more efficient content dissemination. Based on this observation, a novel impact based neighbourhood algorithm called Lobby Influence is presented. The algorithm is tested against two previously proposed algorithms and proves better in terms of message delivery and delay. Moreover, unlike other social based algorithms, which have a tendency to concentrate traffic through their identified routing nodes, the new algorithm provides a fairer load distribution, thus alleviating the tendency to saturate individual nodes

    Efficient location privacy-aware forwarding in opportunistic mobile networks

    Get PDF
    This paper proposes a novel fully distributed and collaborative k-anonymity protocol (LPAF) to protect users’ location information and ensure better privacy while forwarding queries/replies to/from untrusted location-based service (LBS) over opportunistic mobile networks (OppMNets. We utilize a lightweight multihop Markov-based stochastic model for location prediction to guide queries toward the LBS’s location and to reduce required resources in terms of retransmission overheads. We develop a formal analytical model and present theoretical analysis and simulation of the proposed protocol performance. We further validate our results by performing extensive simulation experiments over a pseudo realistic city map using map-based mobility models and using real-world data trace to compare LPAF to existing location privacy and benchmark protocols. We show that LPAF manages to keep higher privacy levels in terms of k-anonymity and quality of service in terms of success ratio and delay, as compared with other protocols, while maintaining lower overheads. Simulation results show that LPAF achieves up to an 11% improvement in success ratio for pseudorealistic scenarios, whereas real-world data trace experiments show up to a 24% improvement with a slight increase in the average delay

    Wireless Underwater Broadband and Long Range Communications using Underwater Drones as Data Mules

    Get PDF
    The underwater communications are essential for the operation and collect large amounts of data (video and images) obtained by Autonomous Underwater Vehicles (AUVs) and remotely controlled underwater vehicles (ROVs) in inspection and monitoring missions at sea. Acoustic waves, despite the high range, allow only narrowband communications, which prevents quick and effective transfer of data. On the other hand, aquatic environment, in particular salt water, severely limits the scope of networks based on electromagnetic waves, having such a range of radius of a few meters. This thesis aims to study and evaluate the use of small vehicles (underwater drones - date mules) capable of transporting data across networks with tolerance to delay (Delay-Tolerant Networks - DTN) between a transmitter and an underwater receiver, taking advantage of high transfer rates at close range. The student must implement a file transfer application that can tolerate high delays in the delivery of information packages. The application will be tested in the underwater environment using the large tank available at INESC TEC and tight cylinder, and compared with simulation results for this scenario. 163/5000 This thesis also presupposes the elaboration of a scientific article for publication in a conference or magazine to disseminate the relevant results of the work.As comunicações subaquáticas são essenciais para a operação e recolha de grandes quantidades de dados (vídeo e imagens) obtidas por Veículos Autónomos Subaquáticos (AUVs) e por veículos subaquáticos controlados remotamente (ROVs) em missões de inspeção e monitorização no mar. As ondas acústicas, apesar do elevado alcance, permitem apenas comunicações de banda estreita, o que inviabiliza a transferência desses dados de forma rápida e eficiente. Por outro lado, o meio aquático, em especial a água salgada, limita severamente o alcance das redes baseadas em ondas eletromagnéticas, tendo estas um raio de alcance de apenas alguns metros. Nesta tese pretende-se estudar e avaliar a utilização de pequenos veículos (drones subaquáticos - data mules) capazes de transportar dados através de redes tolerantes ao atraso (Delay-Tolerant Networks - DTN) entre um emissor e um recetor subaquático, tirando partido das elevadas taxas de transferência a curto alcance. O estudante deverá implementar uma aplicação de transferência de ficheiros capaz de tolerar elevados atrasos na entrega de pacotes de informação. A aplicação será testada em ambiente subaquático recorrendo ao tanque de grandes dimensões disponível no INESC TEC e a cilindros estanques, e comparada com resultados de simulação para esse cenário. Esta tese pressupõe também a elaboração de um artigo científico para publicação em conferência ou revista para disseminação dos resultados relevantes do trabalho

    A Message Transfer Framework for Enhanced Reliability in Delay-and Disruption-Tolerant Networks

    Get PDF
    Many infrastructure-less networks require quick, ad hoc deployment and the ability to deliver messages even if no instantaneous end-to-end path can be found. Such networks include large-scale disaster recovery networks, mobile sensor networks for ecological monitoring, ocean sensor networks, people networks, vehicular networks and projects for connectivity in developing regions such as TIER (Technology and Infrastructure for Emerging Regions). These types of networks can be realized with delay-and disruption-tolerant network (DTN) technology. Generally, messages in DTNs are transferred hop-by-hop toward the destination in an overlay above the transport layer called the ''bundle layer''. Unlike mobile ad hoc networks (MANETs), DTNs can tolerate disruption on end-to-end paths by taking advantage of temporal links emerging between nodes as nodes move in the network. Intermediate nodes store messages before forwarding opportunities become available. A series of encounters (i.e., coming within mutual transmission range) among different nodes will eventually deliver the message to the desired destination. The message delivery performance (such as delivery ratio and delay) in a DTN highly depends on time elapsed between encounters (inter-contact time) and the time two nodes remain in each others communication range once a contact is established (contact-duration). As messages are forwarded opportunistically among nodes, it is important to have sufficient contact opportunities in the network for faster, more reliable delivery of messages. In this thesis, we propose a simple yet efficient method for increasing DTN performance by increasing the contact duration of encountered nodes (i.e., mobile devices). Our proposed sticky transfer framework and protocol enable nodes in DTNs to collect neighbors' information, evaluate their movement patterns and amounts of data to transfer in order to make decisions of whether to ''stick'' with a neighbor to complete the necessary data transfers. Nodes intelligently negotiate sticky transfer parameters such as stick duration, mobility speed and movement directions based on user preferences and collected information. The sticky transfer framework can be combined with any DTN routing protocol to improve its performance. Our simulation results show that the proposed framework can improve the message delivery ratio by up to 38% and the end-to-end message transfer delay by up to 36%

    Delay Tolerant Networks for Efficient Information Harvesting and Distribution in Intelligent Transportation Systems

    Full text link
    [EN] Intelligent Transportation Systems (ITS) can make transportation safer, more efficient, and more sustainable by applying various information and communication technologies. One of these technologies are \acfp{VN}. \acp{VN} combine different communication solutions such as cellular networks, \acfp{VANET}, or IEEE 802.11 technologies to provide connectivity among vehicles, and between vehicles and road infrastructure. This thesis focuses on VNs, and considers that the high speed of the nodes and the presence of obstacles like buildings, produces a highly variable network topology, as well as more frequent partitions in the network. Therefore, classical \ac{MANET} protocols do not adapt well to VANETs. Under these conditions, \ac{DTN} have been proposed as an alternative able to cope with these adverse characteristics. In DTN, when a message cannot be routed to its destination, it is not immediately dropped but it is instead stored and carried until a new route becomes available. The combination of VN and DTN is called \acp{VDTN}. In this thesis, we propose a new VDTN protocol designed to collect information from vehicular sensors. Our proposal, called \ac{MSDP}, combines information about the localization obtained from a GNSS system with the actual street/road layout obtained from a Navigation System (NS) to define a new routing metric. Both analytical and simulation results prove that MSDP outperforms previous proposals. Concerning the deployment of VNs and VANET technologies, technology already left behind the innovation and the standardization phases, and it is about time it reach the first early adopters in the market. However, most car manufacturers have decided to implement VN devices in the form of On Board Units (OBUs), which are expensive, heavily manufacturer dependent, and difficult to upgrade. These facts are delaying the deployment of VN. To boost this process, we have developed the GRCBox architecture. This architecture is based on low-cost devices and enables the establishment of V2X, \emph{i.e.} V2I and V2V, communications while integrating users by easing the use of general purpose devices like smartphones, tablets or laptops. To demonstrate the viability of the GRCBox architecture, we combined it with a DTN platform called Scampi to obtain actual results over a real VDTN scenario. We also present several GRCBox-aware applications that illustrate how developers can create applications that bring the potential of VN to user devices.[ES] Los sistemas de transporte inteligente (ITS) son el soporte para el establecimiento de un transporte más seguro, más eficiente y más sostenible mediante el uso de tecnologías de la información y las comunicaciones. Una de estas tecnologías son las redes vehiculares (VNs). Las VNs combinan diferentes tecnologías de comunicación como las redes celulares, las redes ad-hoc vehiculares (VANETs) o las redes 802.11p para proporcionar conectividad entre vehículos, y entre vehículos y la infraestructura de carreteras. Esta tesis se centra en las VNs, en las cuales la alta velocidad de los nodos y la presencia de obstáculos como edificios producen una topología de red altamente variable, así como frecuentes particiones en la red. Debido a estas características, los protocolos para redes móviles ad-hoc (MANETs) no se adaptan bien a las VANETs. En estas condiciones, las redes tolerantes a retardos (DTNs) se han propuesto como una alternativa capaz de hacer frente a estos problemas. En DTN, cuando un mensaje no puede ser encaminado hacia su destino, no es inmediatamente descartado sino es almacenado hasta que una nueva ruta esta disponible. Cuando las VNs y las DTNs se combinan surgen las redes vehiculares tolerantes a retardos (VDTN). En esta tesis proponemos un nuevo protocolo para VDTNs diseñado para recolectar la información generada por sensores vehiculares. Nuestra propuesta, llamada MSDP, combina la información obtenida del servicio de información geográfica (GIS) con el mapa real de las calles obtenido del sistema de navegación (NS) para definir una nueva métrica de encaminamiento. Resultados analíticos y mediante simulaciones prueban que MSDP mejora el rendimiento de propuestas anteriores. En relación con el despliegue de las VNs y las tecnologías VANET, la tecnología ha dejado atrás las fases de innovación y estandarización, ahora es el momento de alcanzar a los primeros usuarios del mercado. Sin embargo, la mayoría de fabricantes han decidido implementar los dispositivos para VN como unidades de a bordo (OBU), las cuales son caras y difíciles de actualizar. Además, las OBUs son muy dependientes del fabricante original. Todo esto esta retrasando el despliegue de las VNs. Para acelerar la adopción de las VNs, hemos desarrollado la arquitectura GRCBox. La arquitectura GRCBox esta basada en un dispositivo de bajo coste que permite a los usuarios usar comunicaciones V2X (V2V y V2I) mientras utilizan dispositivos de propósito general como teléfonos inteligentes, tabletas o portátiles. Las pruebas incluidas en esta tesis demuestran la viabilidad de la arquitectura GRCBox. Mediante la combinación de nuestra GRCBox y una plataforma de DTN llamada Scampi hemos diseñado y probado un escenario VDTN real. También presentamos como los desarrolladores pueden crear nuevas aplicaciones GRCBox para llevar el potencial de las VN a los dispositivos de usuario.[CA] Els sistemes de transport intel·ligent (ITS) poden crear un transport més segur, més eficient i més sostenible mitjançant l'ús de tecnologies de la informació i les comunicacions aplicades al transport. Una d'aquestes tecnologies són les xarxes vehiculars (VN). Les VN combinen diferents tecnologies de comunicació, com ara les xarxes cel·lulars, les xarxes ad-hoc vehiculars (VANET) o les xarxes 802.11p, per a proporcionar comunicació entre vehicles, i entre vehicles i la infraestructura de carreteres. Aquesta tesi se centra en les VANET, en les quals l'alta velocitat dels nodes i la presència d'obstacles, com els edificis, produeixen una topologia de xarxa altament variable, i també freqüents particions en la xarxa. Per aquest motiu, els protocols per a xarxes mòbils ad-hoc (MANET) no s'adapten bé. En aquestes condicions, les xarxes tolerants a retards (DTN) s'han proposat com una alternativa capaç de fer front a aquests problemes. En DTN, quan un missatge no pot ser encaminat cap a la seua destinació, no és immediatament descartat sinó que és emmagatzemat fins que apareix una ruta nova. Quan les VN i les DTN es combinen sorgeixen les xarxes vehicular tolerants a retards (VDTN). En aquesta tesi proposem un nou protocol per a VDTN dissenyat per a recol·lectar la informació generada per sensors vehiculars. La nostra proposta, anomenada MSDP, combina la informació obtinguda del servei d'informació geogràfica (GIS) amb el mapa real dels carrers obtingut del sistema de navegació (NS) per a definir una nova mètrica d'encaminament. Resultats analítics i mitjançant simulacions proven que MSDP millora el rendiment de propostes prèvies. En relació amb el desplegament de les VN i les tecnologies VANET, la tecnologia ha deixat arrere les fases d'innovació i estandardització, ara és temps d'aconseguir als primers usuaris del mercat. No obstant això, la majoria de fabricants han decidit implementar els dispositius per a VN com a unitats de bord (OBU), les quals són cares i difícils d'actualitzar. A més, les OBU són molt dependents del fabricant original. Tot això està retardant el desplegament de les VN. Per a accelerar l'adopció de les VN, hem desenvolupat l'arquitectura GRCBox. L'arquitectura GRCBox està basada en un dispositiu de baix cost que permet als usuaris usar comunicacions V2V mentre usen dispositius de propòsit general, com ara telèfons intel·ligents, tauletes o portàtils. Les proves incloses en aquesta tesi demostren la viabilitat de l'arquitectura GRCBox. Mitjançant la combinació de la nostra GRCBox i la plataforma de DTN Scampi, hem dissenyat i provat un escenari VDTN pràctic. També presentem com els desenvolupadors poden crear noves aplicacions GRCBox per a portar el potencial de les VN als dispositius d'usuari.Martínez Tornell, S. (2016). Delay Tolerant Networks for Efficient Information Harvesting and Distribution in Intelligent Transportation Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/68486TESI

    Design, Implementation and Evaluation of an In-House Controller for Software Defined Networking with Applications

    Get PDF
    Over the past several decades, there has been a dramatic improvement in net- working technologies. Network devices and protocols are becoming more powerful and complex. The vertical structure of the network protocol layers also leads to a coupled control plane and data plane in data frames. To solve this issue from a structural level, researchers introduced a new architecture of networking, the Software Defined Networking (SDN). By decoupling the control plane and data plane from a frame level and aggregating the protocols into software run in a centralized controller dynamically, engineers obtained a new way to build and control a network dynamically in real time. Meanwhile, with the development of Internet of Things (IoT), data volume from mobile devices and low power terminals are dramatically increasing. However, the traditional cloud computing is still in a relatively centralized architecture, which causes huge traffic volume of IoT applications in the network. To this end, researchers proposed the concept of Edge Computing, which utilizes the capacity of the edge nodes in the network to process data and aggregate data from terminals. This research introduces In-House Controller of SDN which has a distributed characteristic and deployed within SDN nodes to minimize the costs in control plane communication. The In-House controller also enables data processing and aggregation capacity in access points which host these functionalities as SDN applications. To research the system performance of the In-House controller in different application scenarios, in this work, following applications were studied: Data flow aggregation of Message Queue Telemetry Transport (MQTT) protocol in Internet of Things, an MQTT proxy in edge switch which is aggregating short MQTT flows from multiple clients into a long MQTT flow to reduce the control plane traffic overhead in TCP. A novel delay tolerant network architecture and a new convergence layer over MQTT protocol in opportunistic networking. Using in-house controller as host and event scheduler for Delay Tolerant Network (DTN) modules and convergence layers which run as applications guest applications in the controller. With the study of applications, this research also proposed a generalized framework named as SDN Docker which support dynamically docking and un-docking applications in network devices with the help of the In-House controller
    corecore