5,840 research outputs found

    Constructionism through construal by computer

    Get PDF
    Traditional computer programming is not well-aligned to the needs of constructionism. Orthodox programming principles are oriented towards prescribing processes that address clearly specified uses. Functional specification and optimised execution do not encourage interactive exploration and open-ended interpretation. We propose making construals by computer using Empirical Modelling principles as an alternative to conventional computer programming. The merits of this approach are discussed and illustrated using construals for Sudoku solving. Our Sudoku solving construals are made up of definitions that express dependencies between observables. Many kinds of human agency can be expressed through modifying the current set of definitions. The construal serves as a shared artefact with which developers, teachers and pupils can all interact concurrently in essentially the same way, each according to their role and experience. Our preliminary experiments with schoolchildren highlight potential for rich and radically new kinds of learning experience and unprecedented scope for recording, monitoring and intervening in support of constructionist learning. Further empirical study is a vital next step

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    The simpler, the better? Presenting the COPING Android permission-granting interface for better privacy-related decisions

    Get PDF
    One of the great innovations of the modern world is the Smartphone app. The sheer multitude of available apps attests to their popularity and general ability to satisfy our wants and needs. The flip side of the functionality these apps offer is their potential for privacy invasion. Apps can, if granted permission, gather a vast amount of very personal and sensitive information. App developers might exploit the combination of human propensities and the design of the Android permission-granting interface to gain permission to access more information than they really need. This compromises personal privacy. The fact that the Android is the globally dominant phone means widespread privacy invasion is a real concern. We, and other researchers, have proposed alternatives to the Android permission-granting interface. The aim of these alternatives is to highlight privacy considerations more effectively during app installation: to ensure that privacy becomes part of the decision-making process. We report here on a study with 344 participants that compared the impact of a number of permission-granting interface proposals, including our own (called the COPING interface — COmprehensive PermIssioN Granting) and two Android interfaces. To conduct the comparison we carried out an online study with a mixed-model design. Our main finding is that the focus in these interfaces ought to be on improving the quality of the provided information rather than merely simplifying the interface. The intuitive approach is to reduce and simplify information, but we discovered that this actually impairs the quality of the decision. Our recommendation is that further investigation is required in order to find the “sweet spot” where understandability and comprehensiveness are maximised

    Fusion rules for quantum reflection groups

    Full text link
    We find the fusion rules for the quantum analogues of the complex reflection groups Hns=Zs≀SnH_n^s=\mathbb Z_s\wr S_n. The irreducible representations can be indexed by the elements of the free monoid N∗s\mathbb N^{*s}, and their tensor products are given by formulae which remind the Clebsch-Gordan rules (which appear at s=1s=1).Comment: 33 page
    • 

    corecore