103 research outputs found

    Progress in space weather modeling in an operational environment

    Get PDF
    This paper aims at providing an overview of latest advances in space weather modeling in an operational environment in Europe, including both the introduction of new models and improvements to existing codes and algorithms that address the broad range of space weather’s prediction requirements from the Sun to the Earth. For each case, we consider the model’s input data, the output parameters, products or services, its operational status, and whether it is supported by validation results, in order to build a solid basis for future developments. This work is the output of the Sub Group 1.3 ‘‘Improvement of operational models’’ of the European Cooperation in Science and Technology (COST) Action ES0803 ‘‘Developing Space Weather Products and services in Europe’’ and therefore this review focuses on the progress achieved by European research teams involved in the action

    Near Earth space plasma monitoring under COST 296

    Get PDF
    This review paper presents the main achievements of the near Earth space plasma monitoring under COST 296 Action. The outputs of the COST 296 community making data, historical and real-time, standardized and available to the ionospheric community for their research, applications and modeling purposes are presented. The contribution of COST 296 with the added value of the validated data made possible a trusted ionospheric monitoring for research and modeling purposes, and it served for testing and improving the algorithms producing real-time data and providing data users measurement uncertainties. These value added data also served for calibration and validation of space-borne sensors. New techniques and parameters have been developed for monitoring the near Earth space plasma, as time dependent 2D maps of vertical total electron content (vTEC), other key ionospheric parameters and activity indices for distinguishing disturbed ionospheric conditions, as well as a technique for improving the discrepancies of different mapping services. The dissemination of the above products has been developed by COST 296 participants throughout the websites making them available on-line for real-time applications

    The ESPAS e-infrastructure

    Get PDF
    ESPAS provides an e-Infrastructure to support access to a wide range of archived observations and model derived data for the near-Earth space environment, extending from the Earth's middle atmosphere up to the outer radiation belts. To this end, ESPAS will serve as a central access hub for researchers who wish to exploit multi-instrument multipoint data for scientific discovery, model development and validation, and data assimilation, among others. Observation based and model enhanced scientific understanding of the physical state of the Earth's space environment and its evolution is critical to advancing space weather and space climate studies, two very active branches of current scientific research. ESPAS offers an interoperable data infrastructure that enables users to find, access, and exploit near-Earth space environment observations from ground-based and spaceborne instruments and data from relevant models, obtained from distributed repositories. In order to facilitate efficient user queries ESPAS allows a highly flexible workflow scheme to select and request the desired data sets. ESPAS has the strategic goal of making Europe a leading player in the efficient use and dissemination of near-Earth space environment information offered by institutions, laboratories and research teams in Europe and worldwide, that are active in collecting, processing and distributing scientific data. Therefore, ESPAS is committed to support and foster new data providers who wish to promote the easy use of their data and models by the research community via a central access framework. ESPAS is open to all potential users interested in near-Earth space environment data, including those who are active in basic scientific research, technical or operational development and commercial applications

    Near Earth space plasma monitoring under COST 296

    Get PDF
    This review paper presents the main achievements of the near Earth space plasma monitoring under COST 296 Action. The outputs of the COST 296 community making data, historical and real-time, standardized and available to the ionospheric community for their research, applications and modeling purposes are presented. The contribution of COST 296 with the added value of the validated data made possible a trusted ionospheric monitoring for research and modeling purposes, and it served for testing and improving the algorithms producing real-time data and providing data users measurement uncertainties. These value added data also served for calibration and validation of space-borne sensors. New techniques and parameters have been developed for monitoring the near Earth space plasma, as time dependent 2D maps of vertical total electron content (vTEC), other key ionospheric parameters and activity indices for distinguishing disturbed ionospheric conditions, as well as a technique for improving the discrepancies of different mapping services. The dissemination of the above products has been developed by COST 296 participants throughout the websites making them available on-line for real-time applications

    On the possible use of radio occultation middle latitude electron density profiles to retrieve thermospheric parameters

    Get PDF
    This paper investigates possible use of middle latitude daytime COSMIC and CHAMP ionospheric radio occultation (IRO) electron density profiles (EDPs) to retrieve thermospheric parameters, based on the Mikhailov et al. (2012) method. The aim of this investigation is to assess the applicability of this type of observations for the routine implementation of the method. According to the results extracted from the analysis presented here, about half of COSMIC IRO EDP observed under solar minimum (2007–2008) conditions gave neutral gas density with an inaccuracy close to the declared absolute inaccuracy ±(10–15)% of CHAMP observations, with the results being better than the empirical models JB-2008 and MSISE-00 provide. For the other half of IRO EDP, either the solution provided by the method had to be rejected due to insufficient accuracy or no solution could be obtained. For these cases, the parameters foF2 and hmF2 extracted from the corresponding IRO profiles have been found to be inconsistent with the classic mid-latitude daytime F2-layer formalism that the method relies on, and they are incompatible with the general trend provided by the IRI model. For solar maximum conditions (2002) the method was tested with IRO EDP from CHAMP and it is indicated that its performance is quite stable in the sense that a solution could be obtained for all the cases analyzed here. However available CHAMP EDP are confined by ~ 400 km in altitude and this might be the reason for the 20% bias of the retrieved densities toward larger values in respect to the observed densities. IRO observations up to 600 km under solar maximum are required to confirm the exact performance of the method

    WIGOS WMO Integrated Global Observing System Implementation Plan for the Evolution of Global

    Get PDF
    Observing Systems (EGOS-IP) The development of this plan was led by the CBS Open Programme Area Group on the Integrated Observing System (OPAG-IOS), and is a contribution to the WMO Integrated Global Observing System (WIGOS) © World Meteorological Organization, 2013 The right of publication in print, electronic and any other form and in any language is reserved by WMO. Short extracts from WMO publications may be reproduced without authorization, provided that the complete source is clearly indicated. Editorial correspondence and requests to publish, reproduce or translate this publication in part or in whole should be addressed to

    A three-dimensional regional assimilative model of the ionospheric electron density

    Get PDF
    The focus of this thesis is on the development, implementation, and validation of a three-dimensional regional assimilative model of the ionospheric electron density. Empirical climatological models, like the International Reference Ionosphere (IRI) model (Bilitza et al. 2017), cannot predict the whole ionospheric variability, specifically under disturbed magnetic conditions. The model presented in this work has the purpose to improve the IRI description by implementing a data assimilation procedure, based on ionospheric measurements collected by several ground-based or satellite-based instruments. The first phase of the development of the model, called IRI UPdate (IRI UP), is devoted to update the IRI model by ingesting effective indices (IG12eff and R12eff) calculated after assimilating F2 layer characteristics values, measured by a network of ionosondes or derived by vertical total electron content values measured by a network of Global Navigational Satellite Systems receivers. The ingestion of effective indices in the IRI model allows to significantly improve the F2 layer peak density and height description. Being the F2 layer peak an anchor point for the whole IRI’s vertical electron density profile, such procedure allows to update the whole profile. The second phase of the development of the model is devoted to improve the modeling of the topside part of the ionospheric vertical electron density profile by making use of the IRI UP method and in-situ measurements collected by Swarm satellites. Finally, a procedure called IonoPy, embedding the two aforementioned steps, assimilates the whole bottomside electron density profile measured by an ionosonde, thus further improving the ionospheric plasma description in the bottomside ionosphere. All the procedures described in this thesis have been tested and validated by comparing them with other similar models or with independent datasets, for both quiet and disturbed conditions

    Space-Based Remote Sensing of the Earth: A Report to the Congress

    Get PDF
    The commercialization of the LANDSAT Satellites, remote sensing research and development as applied to the Earth and its atmosphere as studied by NASA and NOAA is presented. Major gaps in the knowledge of the Earth and its atmosphere are identified and a series of space based measurement objectives are derived. The near-term space observations programs of the United States and other countries are detailed. The start is presented of the planning process to develop an integrated national program for research and development in Earth remote sensing for the remainder of this century and the many existing and proposed satellite and sensor systems that the program may include are described
    • …
    corecore