2,006 research outputs found

    Planetary surface exploration: MESUR/autonomous lunar rover

    Get PDF
    Planetary surface exploration micro-rovers for collecting data about the Moon and Mars was designed by the Department of Mechanical Engineering at the University of Idaho. The goal of both projects was to design a rover concept that best satisfied the project objectives for NASA-Ames. A second goal was to facilitate student learning about the process of design. The first micro-rover is a deployment mechanism for the Mars Environmental SURvey (MESUR) Alpha Particle/Proton/X-ray instruments (APX). The system is to be launched with the sixteen MESUR landers around the turn of the century. A Tubular Deployment System and a spiked-legged walker was developed to deploy the APX from the lander to the Martian surface. While on Mars the walker is designed to take the APX to rocks to obtain elemental composition data of the surface. The second micro-rover is an autonomous, roving vehicle to transport a sensor package over the surface of the moon. The vehicle must negotiate the lunar-terrain for a minimum of one year by surviving impacts and withstanding the environmental extremes. The rover is a reliable track-driven unit that operates regardless of orientation which NASA can use for future lunar exploratory missions. A detailed description of the designs, methods, and procedures which the University of Idaho design teams followed to arrive at the final designs are included

    Materials review for improved automotive gas turbine engine

    Get PDF
    The potential role of superalloys, refractory alloys, and ceramics in the hottest sections of engines operating with turbine inlet temperatures as high as 1370 C is examined. The convential superalloys, directionally solidified eutectics, oxide dispersion strenghened alloys, and tungsten fiber reinforced superalloys are reviewed and compared on the basis of maximum turbine blade temperature capability. Improved high temperature protective coatings and special fabrication techniques for these advanced alloys are discussed. Chromium, columbium, molybdenum, tantalum, and tungsten alloys are also reviewed. Molbdenum alloys are found to be the most suitable for mass produced turbine wheels. Various forms and fabrication processes for silicon nitride, silicon carbide, and SIALON's are investigated for use in highstress and medium stress high temperature environments

    Computer automation of ultrasonic testing

    Get PDF
    Report describes a prototype computer-automated ultrasonic system developed for the inspection of weldments. This system can be operated in three modes: manual, automatic, and computer-controlled. In the computer-controlled mode, the system will automatically acquire, process, analyze, store, and display ultrasonic inspection data in real-time. Flaw size (in cross-section), location (depth), and type (porosity-like or crack-like) can be automatically discerned and displayed. The results and pertinent parameters are recorded

    Aeronautical Engineering: A special bibliography with indexes, supplement 48

    Get PDF
    This special bibliography lists 291 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1974

    Automated Mini-Tubular Ceramic Production

    Get PDF
    Researchers at Lawrence Livermore National Laboratory need a way to increase the rate of manufacturing of mini-tubular ceramics to be used in testing particulate air filters. This document outlines our process from researching and writing an initial scope of work all the way to fabricating and testing a final prototype. This journey takes us through the background research, ideation process and selection of a final design. We also detail the desired engineering specifications and our concept selection process. We dedicate a significant portion of this report to discussion of our final design. We delve into how it was manufactured as well as the tests we performed and its successes and failures. We also propose potential areas for further development and next steps for sponsors. Overall, this document provides the reader with a comprehensive understanding of our design process and results

    Simulation method and laboratory brake friction dynamometer for tribology studies, A

    Get PDF
    Department Head: Allan Thomson Kirkpatrick.Includes bibliographical references (pages 113-116).Two of the most important parameters of brake system design are the frictional and wear capabilities of the rotor and pad materials. These parameters must meet minimum design requirements in an effort to enhance friction and reduce wear to improve the performance and life of brake system components. The frictional and wear performance of the rotor and pad materials can be assessed through laboratory brake dynamometer testing and evaluation. In the current study, a wear testing simulation and an inertia laboratory brake dynamometer were developed to resolve differences in wear rates of brake materials. Dynamometer testing was conducted to verify the logic of the simulation and the functionality of the dynamometer by measuring wear rates of brake rotor material samples, some of which were subjected to cryogenic heat treatment to modify their wear rates, at varying brake application pressures. Dynamometer testing established that the wear simulation and inertia laboratory brake dynamometer developed during the current study could function together as a suitable tribological experimental apparatus. Specifically, dynamometer testing demonstrated the ability of the experimental apparatus to resolve differences in wear rates of brake materials due to variations in brake application pressure at relatively short test durations; however, dynamometer test results did not show conclusive evidence to suggest an advantage in subjecting the rotor materials used in the current study to cryogenic treatment to lower the rotor or pad wear rates

    Aeronautical engineering: A continuing bibliography with indexes, supplement 100

    Get PDF
    This bibliography lists 295 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System in August 1978

    NASA Tech Briefs, May 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Nanocomposites for Machining Tools

    Get PDF
    Machining tools are used in many areas of production. To a considerable extent, the performance characteristics of the tools determine the quality and cost of obtained products. The main materials used for producing machining tools are steel, cemented carbides, ceramics and superhard materials. A promising way to improve the performance characteristics of these materials is to design new nanocomposites based on them. The application of micromechanical modeling during the elaboration of composite materials for machining tools can reduce the financial and time costs for development of new tools, with enhanced performance. This article reviews the main groups of nanocomposites for machining tools and their performance

    Aeronautical Engineering: A special bibliography with indexes, supplement 54

    Get PDF
    This bibliography lists 316 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1975
    • …
    corecore