49,342 research outputs found

    Game Based Learning for Safety and Security Education

    Full text link
    Safety and security education are important part of technology related education, because of recent number of increase in safety and security related incidents. Game based learning is an emerging and rapidly advancing forms of computer-assisted instruction. Game based learning for safety and security education enables students to learn concepts and skills without the risk of physical injury and security breach. In this paper, a pedestal grinder safety game and physical security game have been developed using industrial standard modeling and game development software. The average score of the knowledge test of grinder safety game was 82%, which is higher than traditional lecture only instruction method. In addition, the survey of physical security game shows 84% average satisfaction ratio from high school students who played the game during the summer camp. The results of these studies indicated that game based learning method can enhance students' learning without potential harm to the students

    Opportunities and challenges in using AI Chatbots in Higher Education

    Get PDF
    Artificial intelligence (AI) conversational chatbots have gained popularity over time, and have been widely used in the fields of e-commerce, online banking, and digital healthcare and well-being, among others. The technology has the potential to provide personalised service to a range of consumers. However, the use of chatbots within educational settings is still limited. In this paper, we present three chatbot prototypes, the Warwick Manufacturing Group, University of Warwick, are currently developing, and discuss the potential opportunities and technical challenges we face when considering AI chatbots to support our daily activities within the department. Three AI virtual agents are under development: 1) to support the delivery of a taught Master's course simulation game; 2) to support the training and use of a newly introduced educational application; 3) to improve the processing of helpdesk requests within a university department. We hope this paper is informative to those interested in using chatbots in the educational domain. We also aim to improve awareness among those within the chatbot development industry, in particular the chatbot engine providers, about the educational and operational needs within educational institutes, which may differ from those in other domains

    A Pedagogy for Original Synners

    Get PDF
    Part of the Volume on Digital Young, Innovation, and the UnexpectedThis essay begins by speculating about the learning environment of the class of 2020. It takes place entirely in a virtual world, populated by simulated avatars, managed through the pedagogy of gaming. Based on this projected version of a future-now-in-formation, the authors consider the implications of the current paradigm shift that is happening at the edges of institutions of higher education. From the development of programs in multimedia literacy to the focus on the creation of hybrid learning spaces (that combine the use of virtual worlds, social networking applications, and classroom activities), the scene of learning as well as the subjects of education are changing. The figure of the Original Synner is a projection of the student-of-the-future whose foundational literacy is grounded in their ability to synthesize information from multiple information streams

    Invariant conditions in value system simulation models

    Get PDF

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    IUPUC Spatial Innovation Lab

    Get PDF
    During the summer of 2016 the IUPUC ME Division envi-sioned the concept of an “Imagineering Lab” based largely on academic makerspace concepts. Important sub-sections of the Imagineering Lab are its “Actualization Lab” (mecha-tronics, actuators, sensors, DAQ devices etc.) and a “Spatial Innovation Lab” (SIL) based on developing “dream stations” (computer work stations) equipped with exciting new tech-nology in intuitive 2D and 3D image creation and Virtual Reality (VR) technology. The objective of the SIL is to cre-ate a work flow converting intuitively created imagery to an-imation, engineering simulation and analysis and computer driven manufacturing interfaces. This paper discusses the challenges and methods being used to create a sustainable Spatial Innovation Lab

    Framework to Enhance Teaching and Learning in System Analysis and Unified Modelling Language

    Get PDF
    Cowling, MA ORCiD: 0000-0003-1444-1563; Munoz Carpio, JC ORCiD: 0000-0003-0251-5510Systems Analysis modelling is considered foundational for Information and Communication Technology (ICT) students, with introductory and advanced units included in nearly all ICT and computer science degrees. Yet despite this, novice systems analysts (learners) find modelling and systems thinking quite difficult to learn and master. This makes the process of teaching the fundamentals frustrating and time intensive. This paper will discuss the foundational problems that learners face when learning Systems Analysis modelling. Through a systematic literature review, a framework will be proposed based on the key problems that novice learners experience. In this proposed framework, a sequence of activities has been developed to facilitate understanding of the requirements, solutions and incremental modelling. An example is provided illustrating how the framework could be used to incorporate visualization and gaming elements into a Systems Analysis classroom; therefore, improving motivation and learning. Through this work, a greater understanding of the approach to teaching modelling within the computer science classroom will be provided, as well as a framework to guide future teaching activities

    Teaching complex theoretical multi-step problems in ICT networking through 3D printing and augmented reality

    Get PDF
    This paper presents a pilot study rationale and research methodology using a mixed media visualisation (3D printing and Augmented Reality simulation) learning intervention to help students in an ICT degree represent theoretical complex multi-step problems without a corresponding real world physical analog model. This is important because these concepts are difficult to visualise without a corresponding mental model. The proposed intervention uses an augmented reality application programmed with free commercially available tools, tested through an action research methodology, to evaluate the effectiveness of the mixed media visualisation techniques to teach ICT students networking. Specifically, 3D models of network equipment will be placed in a field and then the augmented reality app can be used to observe packet traversal and routing between the different devices as data travels from the source to the destination. Outcomes are expected to be an overall improvement in final skill level for all students

    Taking time to understand: articulating relationships between technologies and organizations

    Get PDF
    Dynamic relationships between technologies and organizations are investigated through research on digital visualization technologies and their use in the construction sector. Theoretical work highlights mutual adaptation between technologies and organizations but does not explain instances of sustained, sudden, or increasing maladaptation. By focusing on the technological field, I draw attention to hierarchical structuring around inter-dependent levels of technology; technological priorities of diverse groups; power asymmetries and disjunctures between contexts of development and use. For complex technologies, such as digital technologies, I argue these field-level features explain why organizations peripheral to the field may experience difficulty using emerging technology
    corecore