120 research outputs found

    Cloaking and anamorphism for light and mass diffusion

    Full text link
    We first review classical results on cloaking and mirage effects for electromagnetic waves. We then show that transformation optics allows the masking of objects or produces mirages in diffusive regimes. In order to achieve this, we consider the equation for diffusive photon density in transformed coordinates, which is valid for diffusive light in scattering media. More precisely, generalizing transformations for star domains introduced in [Diatta and Guenneau, J. Opt. 13, 024012, 2011] for matter waves, we numerically demonstrate that infinite conducting objects of different shapes scatter diffusive light in exactly the same way. We also propose a design of external light-diffusion cloak with spatially varying sign-shifting parameters that hides a finite size scatterer outside the cloak. We next analyse non-physical parameter in the transformed Fick's equation derived in [Guenneau and Puvirajesinghe, R. Soc. Interface 10, 20130106, 2013], and propose to use a non-linear transform that overcomes this problem. We finally investigate other form invariant transformed diffusion-like equations in the time domain, and touch upon conformal mappings and non-Euclidean cloaking applied to diffusion processes.Comment: 42 pages, Latex, 14 figures. V2: Major changes : some formulas corrected, some extra cases added, overall length extended from 21 pages (V1) to 42 pages (present version V2). The last version will appear at Journal of Optic

    Mathematical modeling of metamaterials

    Full text link
    Metamaterials are artificially structured nano materials with negative refraction index. The successful construction of such metamaterials in 2000 triggered a great interest in study of metamaterials by researchers from different areas. The discovery of metamaterials opened a wide potential for applications in diverse areas such as cloaking, sub-wavelength imaging, solar cell design and antennas. In this thesis, we investigate the most popular Drude metamaterial model. More specifically, we first present a brief overview of metamaterials and their potential applications, then we discuss the well-posedness of this model, and develop several numerical schemes to solve it. We implement our schemes using MATLAB, and demonstrate their effectiveness through numerical simulations of the negative refraction and cloaking phenomena

    Electromagnetic Field Control and Optimization Using Metamaterials

    Get PDF
    Transformation optics has shown the ability to cloak an object from incident electromagnetic radiation is possible. However, the material parameters are inhomogeneous, anisotropic, and, in some instances, singular at various locations. In order for a cloak to be practically realized, simplified parameter sets are required. However, the simplified parameters result in a degradation in the cloaking function. Constitutive parameters for simplified two-dimensional cylindrical cloaks have been developed with two material property constraints. It was initially believed satisfying these two constraints would result in the simplified cylindrical cloaks having the same wave equation as an ideal cloak. Because of this error, the simplified cloaks were not perfect. No analysis was done to determine all material parameter constraints to enable a perfect two-dimensional cylindrical cloak. This research developed a third constraint on the material parameters. It was shown as the material parameters better satisfy this new equation, a two-dimensional cylindrical cloak\u27s hidden region is better shielded from incident radiation. Additionally, a novel way to derive simplified material parameters for two-dimensional cylindrical cloaks was developed. A Taylor series expansion dictated by the new constraint equation leads to simplified cloaks with significantly improved scattering width performances when compared to previous published results. During the course of this research, it was noted all cloak simulations are performed using finite element method (FEM) based numerical methods. A Green\u27s function was used to accurately calculate scattering widths from a two-dimensional cylindrical cloak with a perfect electrically conducting inner shell. Significant time improvements were achieved using the Green\u27s function compared to an FEM solution particularly as the computational domain size is increased. Finally, cloaks are physically realized using metamaterials. Design of metamaterials has typically been done empirically. Shifts in S-parameter measurements and the resulting extracted constitutive parameters are used to determine the impact to resonant regions due to various geometries. A new way to design and possibly optimize unit cell metamaterials was investigated using an eigendecomposition to identify the cell resonances. Different structures were shown to have different resonances, and control of the resonant locations can lead to optimum designs

    Design, Modeling, and Measurement of a Metamaterial Electromagnetic Field Concentrator

    Get PDF
    This document addresses the need to improve the design process for creating an optimized metamaterial. In particular, two challenges are addressed: creating an electromagnetic concentrator and optimizing the design of metamaterial used to create the electromagnetic concentrator. The first challenge is addressed by developing an electromagnetic field concentrator from a design of concentric geometric shapes. The material forming the concentrator is derived from the application of transformation optics. The resulting anisotropic, spatially variant constitutive parameter tensors are then approximated with metamatieral inclusions using the combination of an AFIT rapid metamaterial design process and a design process created for rapid metamaterial production. The second challenge of optimizing the design of the metamaterial is addressed by considering factors such as circuit board selection, various sets of metamaterial cell geometry combinations, and optimization of the ratio of the widths for the concentric geometric shapes. The resulting optimized design is simulated and shown to compress and concentrate the vertical electric field component of incident plane waves. A physical device is constructed based on the simulations and tested to confirm the entire design process. Experimental data do not definitely show concentration however an optimized design process has been proven

    Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum

    Full text link
    The time-resolved X-ray diffraction synchrotron radiation technique was used in combination with E-field microwave heating to study in situ the kinetics of intermetallic phase formation in the Ti-Al system. The reaction of Ti with Al is triggered by the melting and spreading of Al onto the surface of Ti particles. The tetragonal TiAl 3 phase is the primary reaction product, formed by instantaneous nucleation at the interface between the unreacted Ti cores and the Al melt. The growth of TiAl 3 layers is diffusion-controlled. These preliminary results demonstrate that microwave heating can be used to rapidly synthesise intermetallic phases from high-purity elemental powders. © 2010 Elsevier B.V. All rights reserved.This work has been supported by the Swiss National Science Foundation (Grant 20PA21E-129193).Vaucher, S.; Stir, M.; Ishizaki, K.; Catalá Civera, JM.; Nicula, R. (2011). Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum. Thermochimica Acta. 522(1):151-154. doi:10.1016/j.tca.2010.11.026S151154522

    Novel Applications of Optical Diffraction Tomography: On-chip Microscopy and Detection of Invisibility Cloaks

    Full text link
    [ES] La tomografía por difracción surge para mejorar las técnicas de imagen al considerar la naturaleza ondulatoria de la luz. Mientras que los primeros sistemas de imagen médica se basaban únicamente en fuentes sin difracción, este enfoque consigue mejorar la reconstrucción del índice de refracción de los objetos, lo que permite, por ejemplo, el estudio de estructuras subcelulares. Del mismo modo, la demanda de redes de telecomunicaciones cada vez más rápidas y seguras ha propiciado la aparición de la fotónica. Hace dos décadas, la combinación de estos dos campos dio lugar a los primeros sistemas de tomografía por difracción óptica (ODT), los cuáles han evolucionado rápidamente durante este siglo. En esta tesis, presentamos dos nuevas aplicaciones de la ODT. La primera está relacionada con el concepto del microscopio tomográfico de fase (TPM), una versión de la ODT que permite el estudio de células aisladas, con muchas aplicaciones biomédicas, como el diagnóstico y la prognosis del cáncer. Sin embargo, los sistemas TPM actuales son caros, pesados y complejos. Para resolver estos problemas, proponemos el concepto de TPM en chip. Con este fin, diseñamos una hoja de ruta hacia el primer dispositivo tomográfico integrado en el marco de la tecnología lab-on-a-chip (LoC), y desarrollamos los primeros pasos para ello: 1) Hasta ahora, sólo se han utilizado detectores planos para obtener los mapas de índice de refracción de los objetos estudiados en TPM, basados en la detección del campo difractado hacia delante. Sin embargo, los principios físicos fundamentales indican que medir también el campo difractado hacia detrás debería mejorar la resolución de las imágenes. Además, un detector plano no es la configuración óptima para el TPM en chip. En esta línea, hemos explorado la posibilidad de usar detectores circulares en este escenario, como una técnica más adecuada para las configuraciones en chip, demostrando al mismo tiempo que este enfoque proporciona una mejor resolución que el lineal. 2) Proponemos un esquema de TPM en chip basado en el uso de nanoantenas dieléctricas como fuente de luz y píxeles detectores ODT, y caracterizamos experimentalmente su comportamiento mediante microscopía óptica de campo cercano. En cuanto a la segunda aplicación, estudiamos el potencial de la ODT como nuevo paradigma en la detección de capas de invisibilidad realistas, una de las aplicaciones más importantes de los metamateriales. Hasta ahora, el scattering cross section (SCS) se ha utilizado como modelo de referencia para diseñar y observar la eficacia de estos dispositivos para ocultar objetos. En nuestro estudio, demostramos que la ODT puede detectar las capas de invisibilidad prácticas con una sensibilidad superior a la que ofrece el SCS, incluso a las frecuencias de trabajo óptimas. Además, es posible obtener una imagen representativa del tamaño y la forma de la capa, revelando claramente su existencia. Finalmente, se discuten las conclusiones extraídas de los resultados obtenidos. Además, se detallan las futuras líneas de trabajo para abordar los retos que no se han completado en esta tesis doctoral.[CA] La tomografia per difracció sorgeix per millorar les tècniques d'imatge anteriors en considerar la naturalesa ondulatòria de la llum. Mentre que els primers sistemes d'imatge mèdica es basaven únicament en fonts sense difracció, aquest enfocament aconsegueix millorar la reconstrucció de l'índex de refracció dels objectes, la qual cosa permet, per exemple, l'estudi d'estructures subcelulars. De la mateixa manera, la demanda de xarxes de telecomunicacions cada vegada més ràpides i segures ha propiciat l'aparició de la fotònica. Fa dues dècades, la combinació d'aquests dos camps va portar als primers sistemes de tomografia per difracció òptica (ODT), els quals han evolucionat ràpidament durant aquest segle. En aquesta tesi, presentem dues noves aplicacions de la ODT. La primera està relacionada amb el concepte del microscopi tomogràfic de fase (TPM), una versió de la ODT que permet l'estudi de cèl·lules aïllades, amb moltes aplicacions en biomedicina, com el diagnòstic i prognosi del càncer. No obstant això, els sistemes TPM actuals són cars, pesats i complexos. Per resoldre aquests problemes, proposem el concepte de TPM en xip. Per fer-ho, dissenyem un full de ruta cap al primer dispositiu tomogràfic integrat en el marc de la tecnologia lab-on-a-chip (LoC), i desenvolupem els primers passos a aquest efecte: 1) Fins ara, només s'han utilitzat detectors plans per a obtindre els mapes d'índex de refracció dels objectes estudiats en TPM, basats en la detecció del camp difractat cap avant. No obstant això, els principis físics fonamentals indiquen que mesurar també el camp difractat cap endarrere hauria de millorar la resolució de les imatges. A més, un detector pla no és la configuració òptima per al TPM en xip. En aquesta línia, hem explorat la possibilitat d'usar detectors circulars en aquest escenari, com una tècnica més adequada per a les configuracions en xip, demostrant al mateix temps que aquest enfocament proporciona una millor resolució que el lineal. 2) Proposem un esquema de TPM en xip basat en l'ús de nanoantenes dielèctriques com a font de llum i píxels detectors ODT, i caracteritzem experimentalment el seu comportament en camp pròxim mitjançant microscòpia òptica de camp pròxim. Pel que fa a la segona aplicació, estudiem el potencial de la ODT com a nou paradigma en la detecció de capes d'invisibilitat realistes, una de les aplicacions més importants dels metamaterials. Fins ara, el scattering cross section (SCS) s'ha utilitzat com a model de referència per a dissenyar i observar l'eficàcia d'aquests dispositius per a ocultar objectes. En el nostre estudi, vam demostrar que la ODT pot detectar les capes d'invisibilitat pràctiques amb una sensibilitat superior a la que ofereix el SCS, fins i tot a les freqüències de treball òptimes. A més, és possible obtindre una imatge representativa de la grandària i la forma de la capa, revelant clarament la seua existència. Finalment, es discuteixen les conclusions extretes dels resultats obtinguts i es detallen les futures línies de treball per a abordar els reptes que no s'han completat en aquesta tesi doctoral.[EN] Diffraction Tomography arises to improve previous imaging techniques by considering the wave nature of light. Whereas the first medical imaging systems relied only on non-diffracting sources, this approach results in an enhanced reconstruction of the object's refractive index distribution, allowing, for example, the study of subcellular structures. Likewise, the demand for increasingly faster and secure telecommunication networks led to the advent of photonics. Two decades ago, the combination of these two fields gave rise to the first optical diffraction tomography (ODT) systems, which have rapidly evolved during this century. In this thesis, we present two novel applications of ODT. The first one is related to the concept of tomographic phase microscopy (TPM), a version of ODT that enables the study of isolated cells, with many applications in biomedicine, such as the diagnosis and prognosis of cancer. Nevertheless, current TPM systems are expensive, heavy, and cumbersome. To solve these issues we propose the concept of on-chip TPM. For this purpose, we design a roadmap towards the first integrated tomographic device in the frame of lab-on-a-chip (LoC) technology and develop the first steps to this end: 1) Until now, only flat detectors have been used to obtain the refractive index maps of the objects studied in TPM, based on the detection of the forward scattering. However, fundamental physical principles indicate that measuring also the backscattered field should improve the resolution of the images. Moreover, a flat detector is not the optimal configuration for on-chip TPM. In this vein, we have explored the possibility of using circular detectors in this scenario as a more suitable technique for on-chip configurations, demonstrating at the same time that this approach provides a better resolution than the linear one. 2) We propose a TPM on-chip scheme based on the use of dielectric nanoantennas as the ODT light source and detector pixels, and experimentally characterize their near-field behavior via scanning near-field optical microscopy. As for the second application, we study the potential of ODT as a new paradigm in the detection of realistic invisibility cloaks, one of the most important applications of metamaterials. Up to now, the scattering cross section (SCS) has been used as the gold standard to design and observe the effectiveness of these devices in hiding objects. In our study, we show that ODT can detect practical invisibility cloaks with a higher sensitivity than that offered by the SCS, even at the optimal working frequencies. Moreover, it is possible to obtain an image depicting the size and shape of the cloak, clearly revealing their existence. Finally, the conclusions drawn from the obtained results are discussed. In addition, future lines of action to address the challenges that have not been completed in this doctoral thesis are detailed.Díaz Fernández, FJ. (2021). Novel Applications of Optical Diffraction Tomography: On-chip Microscopy and Detection of Invisibility Cloaks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/180125TESI

    Doctor of Philosophy

    Get PDF
    dissertationMicrowave/millimeter-wave imaging systems have become ubiquitous and have found applications in areas like astronomy, bio-medical diagnostics, remote sensing, and security surveillance. These areas have so far relied on conventional imaging devices (empl

    Roadmap on Transformation Optics

    Get PDF
    Transformation Optics asks Maxwell's equations what kind of electromagnetic medium recreate some smooth deformation of space. The guiding principle is Einstein's principle of covariance: that any physical theory must take the same form in any coordinate system. This requirement fixes very precisely the required electromagnetic medium. The impact of this insight cannot be overestimated. Many practitioners were used to thinking that only a few analytic solutions to Maxwell's equations existed, such as the monochromatic plane wave in a homogeneous, isotropic medium. At a stroke, Transformation Optics increases that landscape from `few' to `infinity', and to each of the infinitude of analytic solutions dreamt up by the researcher, corresponds an electromagnetic medium capable of reproducing that solution precisely. The most striking example is the electromagnetic cloak, thought to be an unreachable dream of science fiction writers, but realised in the laboratory a few months after the papers proposing the possibility were published. But the practical challenges are considerable, requiring meta-media that are at once electrically and magnetically inhomogeneous and anisotropic. How far have we come since the first demonstrations over a decade ago? And what does the future hold? If the wizardry of perfect macroscopic optical invisibility still eludes us in practice, then what compromises still enable us to create interesting, useful, devices? While 3D cloaking remains a significant technical challenge, much progress has been made in 2- dimensions. Carpet cloaking, wherein an object is hidden under a surface that appears optically flat, relaxes the constraints of extreme electromagnetic parameters. Surface wave cloaking guides sub-wavelength surface waves, making uneven surfaces appear flat. Two dimensions is also the setting in which conformal and complex coordinate transformations are realisable, and the possibilities in this restricted domain do not appear to have been exhausted yet. Beyond cloaking, the enhanced electromagnetic landscape provided by Transformation Optics has shown how fully analytic solutions can be found to a number of physical scenarios such as plasmonic systems used in electron energy loss spectroscopy (EELS) and cathodoluminescence (CL). Are there further fields to be enriched? A new twist to Transformation Optics was the extension to the space-time domain. By applying transformations to space-time, rather than just space, it was shown that events rather than objects could be hidden from view; Transformation Optics had provided a means of effectively redacting events from history. The hype quickly settled into serious nonlinear optical experiments that demonstrated the soundness of the idea, and it is now possible to consider the practical implications, particularly in optical signal processing, of having an `interrupt-without-interrupt' facility that the so-called temporal cloak provides. Inevitable issues of dispersion in actual systems have only begun to be addressed. Now that time is included in the programme of Transformation Optics, it is natural to ask what role ideas from General Relativity can play in shaping the future of Transformation Optics. Indeed, one of the earliest papers on Transformation Optics was provocatively titled `General Relativity in Electrical Engineering'. The answer that curvature does not enter directly into transformation optics merely encourages us to speculate on the role of Transformation Optics in defining laboratory analogues. Quite why Maxwell's theory defines a `perfect' transformation theory, while other areas of physics such as acoustics are not apparently quite so amenable, is a deep question whose precise, mathematical answer will help inform us of the extent to which similar ideas can be extended to other fields. The contributors to this roadmap review, who are all renowned practitioners or inventors of Transformation Optics, will give their perspectives into the field's status and future development
    corecore