236 research outputs found

    Patrol team language identification system for DARPA RATS P1 evaluation

    Get PDF
    This paper describes the language identification (LID) system developed by the Patrol team for the first phase of the DARPA RATS (Robust Automatic Transcription of Speech) program, which seeks to advance state of the art detection capabilities on audio from highly degraded communication channels. We show that techniques originally developed for LID on telephone speech (e.g., for the NIST language recognition evaluations) remain effective on the noisy RATS data, provided that careful consideration is applied when designing the training and development sets. In addition, we show significant improvements from the use of Wiener filtering, neural network based and language dependent i-vector modeling, and fusion

    Adversarial Network Bottleneck Features for Noise Robust Speaker Verification

    Full text link
    In this paper, we propose a noise robust bottleneck feature representation which is generated by an adversarial network (AN). The AN includes two cascade connected networks, an encoding network (EN) and a discriminative network (DN). Mel-frequency cepstral coefficients (MFCCs) of clean and noisy speech are used as input to the EN and the output of the EN is used as the noise robust feature. The EN and DN are trained in turn, namely, when training the DN, noise types are selected as the training labels and when training the EN, all labels are set as the same, i.e., the clean speech label, which aims to make the AN features invariant to noise and thus achieve noise robustness. We evaluate the performance of the proposed feature on a Gaussian Mixture Model-Universal Background Model based speaker verification system, and make comparison to MFCC features of speech enhanced by short-time spectral amplitude minimum mean square error (STSA-MMSE) and deep neural network-based speech enhancement (DNN-SE) methods. Experimental results on the RSR2015 database show that the proposed AN bottleneck feature (AN-BN) dramatically outperforms the STSA-MMSE and DNN-SE based MFCCs for different noise types and signal-to-noise ratios. Furthermore, the AN-BN feature is able to improve the speaker verification performance under the clean condition

    Two-Dimensional Convolutional Recurrent Neural Networks for Speech Activity Detection

    Get PDF
    Speech Activity Detection (SAD) plays an important role in mobile communications and automatic speech recognition (ASR). Developing efficient SAD systems for real-world applications is a challenging task due to the presence of noise. We propose a new approach to SAD where we treat it as a two-dimensional multilabel image classification problem. To classify the audio segments, we compute their Short-time Fourier Transform spectrograms and classify them with a Convolutional Recurrent Neural Network (CRNN), traditionally used in image recognition. Our CRNN uses a sigmoid activation function, max-pooling in the frequency domain, and a convolutional operation as a moving average filter to remove misclassified spikes. On the development set of Task 1 of the 2019 Fearless Steps Challenge, our system achieved a decision cost function (DCF) of 2.89%, a 66.4% improvement over the baseline. Moreover, it achieved a DCF score of 3.318% on the evaluation dataset of the challenge, ranking first among all submissions

    On the use of i-vector posterior distributions in Probabilistic Linear Discriminant Analysis

    Get PDF
    The i-vector extraction process is affected by several factors such as the noise level, the acoustic content of the observed features, the channel mismatch between the training conditions and the test data, and the duration of the analyzed speech segment. These factors influence both the i-vector estimate and its uncertainty, represented by the i-vector posterior covariance. This paper presents a new PLDA model that, unlike the standard one, exploits the intrinsic i-vector uncertainty. Since the recognition accuracy is known to decrease for short speech segments, and their length is one of the main factors affecting the i-vector covariance, we designed a set of experiments aiming at comparing the standard and the new PLDA models on short speech cuts of variable duration, randomly extracted from the conversations included in the NIST SRE 2010 extended dataset, both from interviews and telephone conversations. Our results on NIST SRE 2010 evaluation data show that in different conditions the new model outperforms the standard PLDA by more than 10% relative when tested on short segments with duration mismatches, and is able to keep the accuracy of the standard model for long enough speaker segments. This technique has also been successfully tested in the NIST SRE 2012 evaluation

    Fast Scoring of Full Posterior PLDA Models

    Get PDF

    Text-Independent Speaker Identification Using the Histogram Transform Model

    Get PDF
    corecore