3,992 research outputs found

    Integration of Artificial Neural Networks and Simulation Modeling in a Decision Support System

    Get PDF
    A simulation based decision support system is developed for AT&T Microelectronics in Orlando. This system uses simulation modeling to capture the complex nature of semiconductor test operations. Simulation, however, is not a tool for optimization by itself. Numerous executions of the simulation model must generally be performed to narrow in on a set of proper decision parameters. As a means of alleviating this shortcoming, artificial neural networks are used in conjunction with simulation modeling to aid management in the decision making process. The integration of simulation and neural networks in a comprehensive decision support system, in effect, learns the reverse of the simulation process. That is, given a set of goals defined for performance measures, the decision support system suggests proper values for decision parameters to achieve those goals

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization

    Generically Used Expert Scheduling System (GUESS): User's Guide Version 1.0

    Get PDF
    This user's guide contains instructions explaining how to best operate the program GUESS, a generic expert scheduling system. GUESS incorporates several important features for a generic scheduler, including automatic scheduling routines to generate a 'first' schedule for the user, a user interface that includes Gantt charts and enables the human scheduler to manipulate schedules manually, diagnostic report generators, and a variety of scheduling techniques. The current version of GUESS runs on an IBM PC or compatible in the Windows 3.1 or Windows '95 environment

    RT-MOVICAB-IDS: Addressing real-time intrusion detection

    Get PDF
    This study presents a novel Hybrid Intelligent Intrusion Detection System (IDS) known as RT-MOVICAB-IDS that incorporates temporal control. One of its main goals is to facilitate real-time Intrusion Detection, as accurate and swift responses are crucial in this field, especially if automatic abortion mechanisms are running. The formulation of this hybrid IDS combines Artificial Neural Networks (ANN) and Case-Based Reasoning (CBR) within a Multi-Agent System (MAS) to detect intrusions in dynamic computer networks. Temporal restrictions are imposed on this IDS, in order to perform real/execution time processing and assure system response predictability. Therefore, a dynamic real-time multi-agent architecture for IDS is proposed in this study, allowing the addition of predictable agents (both reactive and deliberative). In particular, two of the deliberative agents deployed in this system incorporate temporal-bounded CBR. This upgraded CBR is based on an anytime approximation, which allows the adaptation of this Artificial Intelligence paradigm to real-time requirements. Experimental results using real data sets are presented which validate the performance of this novel hybrid IDSMinisterio de Economía y Competitividad (TIN2010-21272-C02-01, TIN2009-13839-C03-01), Ministerio de Ciencia e Innovación (CIT-020000-2008-2, CIT-020000-2009-12

    Cyber-Physical Systems for Smart Water Networks: A Review

    Get PDF
    There is a growing demand to equip Smart Water Networks (SWN) with advanced sensing and computation capabilities in order to detect anomalies and apply autonomous event-triggered control. Cyber-Physical Systems (CPSs) have emerged as an important research area capable of intelligently sensing the state of SWN and reacting autonomously in scenarios of unexpected crisis development. Through computational algorithms, CPSs can integrate physical components of SWN, such as sensors and actuators, and provide technological frameworks for data analytics, pertinent decision making, and control. The development of CPSs in SWN requires the collaboration of diverse scientific disciplines such as civil, hydraulics, electronics, environment, computer science, optimization, communication, and control theory. For efficient and successful deployment of CPS in SWN, there is a need for a common methodology in terms of design approaches that can involve various scientific disciplines. This paper reviews the state of the art, challenges, and opportunities for CPSs, that could be explored to design the intelligent sensing, communication, and control capabilities of CPS for SWN. In addition, we look at the challenges and solutions in developing a computational framework from the perspectives of machine learning, optimization, and control theory for SWN.acceptedVersio

    Logic-based Technologies for Intelligent Systems: State of the Art and Perspectives

    Get PDF
    Together with the disruptive development of modern sub-symbolic approaches to artificial intelligence (AI), symbolic approaches to classical AI are re-gaining momentum, as more and more researchers exploit their potential to make AI more comprehensible, explainable, and therefore trustworthy. Since logic-based approaches lay at the core of symbolic AI, summarizing their state of the art is of paramount importance now more than ever, in order to identify trends, benefits, key features, gaps, and limitations of the techniques proposed so far, as well as to identify promising research perspectives. Along this line, this paper provides an overview of logic-based approaches and technologies by sketching their evolution and pointing out their main application areas. Future perspectives for exploitation of logic-based technologies are discussed as well, in order to identify those research fields that deserve more attention, considering the areas that already exploit logic-based approaches as well as those that are more likely to adopt logic-based approaches in the future

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research
    corecore