220 research outputs found

    下腹部を対象とした極細針によるCTガイド下高正確度穿刺プランニング

    Get PDF
    早大学位記番号:新8149早稲田大

    Identification of the Elastic Modulus of an Organ Model Using Reactive Force and Ultrasound Image

    Get PDF
    制度:新 ; 報告番号:甲3418号 ; 学位の種類:博士(工学) ; 授与年月日:2011/7/28 ; 早大学位記番号:新574

    Ultrasound Guidance in Perioperative Care

    Get PDF

    Ultrasound Guidance in Perioperative Care

    Get PDF

    Sensorisation of a novel biologically inspired flexible needle

    Get PDF
    Percutaneous interventions are commonly performed during minimally invasive brain surgery, where a straight rigid instrument is inserted through a small incision to access a deep lesion in the brain. Puncturing a vessel during this procedure can be a life-threatening complication. Embedding a forward-looking sensor in a rigid needle has been proposed to tackle this problem; however, using a rigid needle, the procedure needs to be interrupted if a vessel is detected. Steerable needle technology could be used to avoid obstacles, such as blood vessels, due to its ability to follow curvilinear paths, but research to date was lacking in this respect. This thesis aims to investigate the deployment of forward-looking sensors for vessel detection in a steerable needle. The needle itself is based on a bioinspired programmable bevel-tip needle (PBN), a multi-segment design featuring four hollow working channels. In this thesis, laser Doppler flowmetry (LDF) is initially characterised to ensure that the sensor fulfils the minimum requirements for it to be used in conjunction with the needle. Subsequently, vessel reconstruction algorithms are proposed. To determine the axial and off-axis position of the vessel with respect to the probe, successive measurements of the LDF sensor are used. Ideally, full knowledge of the vessel orientation is required to execute an avoidance strategy. Using two LDF probes and a novel signal processing method described in this thesis, the predicted possible vessel orientations can be reduced to four, a setup which is explored here to demonstrate viable obstacle detection with only partial sensor information. Relative measurements from four LDF sensors are also explored to classify possible vessel orientations in full and without ambiguity, but under the assumption that the vessel is perpendicular to the needle insertion axis. Experimental results on a synthetic grey matter phantom are presented, which confirm these findings. To release the perpendicularity assumption, the thesis concludes with the description of a machine learning technique based on a Long Short-term memory network, which enables a vessel's spatial position, cross-sectional diameter and full pose to be predicted with sub-millimetre accuracy. Simulated and in-vitro examinations of vessel detection with this approach are used to demonstrate effective predictive ability. Collectively, these results demonstrate that the proposed steerable needle sensorisation is viable and could lead to improved safety during robotic assisted needle steering interventions.Open Acces

    Medical device design within the ISO 13485 framework

    Get PDF
    The design and development of medical devices has become an increasing complex and regulated process. Little if any consideration is given to the regulatory requirements when developing medical devices in universities. This has resulted in an imposing barrier preventing academic innovation reaching clinical adoption. The scope of universities is not to become the legal manufacturer of medical devices. However, should the development of novel devices ever aim to benefit patient care and reach a clinical setting, design controls must be implemented throughout the project life cycle to demonstrate feasibility and safety. The aim of this thesis is to develop user-centred technologies which comply with industrial design control practices whilst helping to bolster and promote innovation within academia. Four projects relating to medical devices have been designed in response to well-defined and end-user-originated clinical needs. These devices can serve as the exemplar for the framework developed in this work with each reaching staggered phases of development within a controlled design process. Although unique, the devices have significant overlapping characteristics that lend the devices to parallel development, leveraging in-house know-how and ‘lessons learned’ into the process of innovation. This thesis focuses on the novelty and design of the aforementioned projects in a discrete structured approach and reflects on the development of each project within the context of a design control process which was developed as part of this work. It is the ultimate goal of this work to develop a flexible structured system compliant with the international requirements for product design and development which may be exported internationally. However, the full execution of this ambition was limited due physical, and financial limitations. This manuscript will describe the technical and commercial opportunity of devices and reflects on the success of developing same within a design control process developed as part of this work

    Cardiac Surgery Procedures

    Get PDF

    Mastering Endo-Laparoscopic and Thoracoscopic Surgery

    Get PDF
    This is an open access book. The book focuses mainly on the surgical technique, OR setup, equipments and devices necessary in minimally invasive surgery (MIS). It serves as a compendium of endolaparoscopic surgical procedures. It is an official publication of the Endoscopic and Laparoscopic Surgeons of Asia (ELSA). The book includes various sections covering basic skills set, devices, equipments, OR setup, procedures by area. Each chapter cover introduction, indications and contraindications, pre-operative patient’s assessment and preparation, OT setup (instrumentation required, patient’s position, etc.), step by step description of surgical procedures, management of complications, post-operative care. It includes original illustrations for better understanding and visualization of specific procedures. The book serves as a practical guide for surgical residents, surgical trainees, surgical fellows, junior surgeons, surgical consultants and anyone interested in MIS. It covers most of the basic and advanced laparoscopic and thoracoscopic surgery procedures meeting the curriculum and examination requirements of the residents

    Artificial intelligence versus human intelligence in anaesthesia: who is winning?

    Get PDF
    Artificial intelligence (AI) plays a significant role especially in the light of the COVID-19 pandemic. The position of anaesthesiologists and their role in providing anaesthetic services initially was dominant. The AI ability to overtake the human’s capability in providing an accurate medical treatment may threaten the role of a doctor. The integration of AI in anaesthesia has been tremendous. Challenges in using this technology in anaesthesia are to determine, design, test the practicality, maintain dynamicity and market the technology. In the future, we hope AI may become the strongest weapon for anaesthesiologists to deliver the best anaesthesia services to patients and not as an enem

    Physical Diagnosis and Rehabilitation Technologies

    Get PDF
    The book focuses on the diagnosis, evaluation, and assistance of gait disorders; all the papers have been contributed by research groups related to assistive robotics, instrumentations, and augmentative devices
    corecore