32,519 research outputs found

    Training Competences in Industrial Risk Prevention with Lego® Serious Play®: A Case Study

    Get PDF
    This paper proposes the use of the Lego® Serious Play® (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017–2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of “gamification” dynamics with Lego® Serious Play®. In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams.Spanish Ministry of Science, Innovation and Universities / European Social Fund: Ramón y Cajal contract (RYC-2017-22222

    Training Competences in Industrial Risk Prevention with Lego (R) Serious Play (R): A Case Study

    Get PDF
    This paper proposes the use of the Lego (R) Serious Play (R) (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017-2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of "gamification" dynamics with Lego (R) Serious Play (R). In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams

    Towards Industrialized Conception and Production of Serious Games

    Get PDF
    Serious Games (SGs) have experienced a tremendous outburst these last years. Video game companies have been producing fun, user-friendly SGs, but their educational value has yet to be proven. Meanwhile, cognition research scientist have been developing SGs in such a way as to guarantee an educational gain, but the fun and attractive characteristics featured often would not meet the public's expectations. The ideal SG must combine these two aspects while still being economically viable. In this article, we propose a production chain model to efficiently conceive and produce SGs that are certified for their educational gain and fun qualities. Each step of this chain will be described along with the human actors, the tools and the documents that intervene

    Imparting Systems Engineering Experience via Interactive Fiction Serious Games

    Get PDF
    Serious games for education are becoming increasing popular. Interactive fiction games are some of the most popular in app stores and are also beginning to be heavily used in education to teach analysis and decision-making. Noting that it is difficult for systems engineers to experience all necessary situations which prepare them for the role of a chief engineer, in this paper, we explore the use of interactive fiction serious games to impart systems engineering experience and to teach systems engineering principles. The results of a cognitive viability, qualitative viability, and replayability analysis of 14 systems engineering serious games developed in the interactive fiction genre are presented. The analysis demonstrates that students with a systems engineering background are able to learn the Twine gaming engine and create a serious game aligned to the Apply level of Bloom’s Taxonomy which conveys a systems engineering experience and teaches a systems engineering principle within a four-week period of time. These quickly generated games cognitive, quality, and replayability scores indicate they provide some opportunity for high-level thinking, are of high quality, and with above average replayability, are likely to be played multiple times and/or recommended to others

    Dealing with abstraction: Case study generalisation as a method for eliciting design patterns

    Get PDF
    Developing a pattern language is a non-trivial problem. A critical requirement is a method to support pattern writers with abstraction, so as they can produce generalised patterns. In this paper, we address this issue by developing a structured process of generalisation. It is important that this process is initiated through engaging participants in identifying initial patterns, i.e. directly dealing with the 'cold-start' problem. We have found that short case study descriptions provide a productive 'way into' the process for participants. We reflect on a 1-year interdisciplinary pan-European research project involving the development of almost 30 cases and over 150 patterns. We provide example cases, detailing the process by which their associated patterns emerged. This was based on a foundation for generalisation from cases with common attributes. We discuss the merits of this approach and its implications for pattern development

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Mediating skills on risk management for improving the resilience of Supply Networks by developing and using a serious game

    Get PDF
    Given their importance, the need for resilience and the management of risk within Supply Networks, means that engineering students need a solid under-standing of these issues. An innovative way of meeting this need is through the use of serious games. Serious games allow an active experience on how differ-ent factors influencethe flexibility, vulnerability and capabilities in Supply Networks and allow the students to apply knowledge and methods acquired from theory. This supports their ability to understand, analyse and evaluate how different factors contribute to the resilience. The experience gained within the game will contribute to the studentsâ abilities to construct new knowledge based on their active observation and reflection of the environment when they later work in a dynamic environment in industry. This game, Beware, was developed for use in a blended learning environment. It is a part of a course for engineering master students at the University of Bremen. It was found that the game was effective in mediating the topic of risk management to the students espscially in supporting their ability of applying methods, analyse the different interactions and the game play as well as to support the assessment of how their decision-making affected the simulated network

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program
    corecore