9,299 research outputs found

    Electro-thermal modelling of multi chip power modules for high power converter application

    Get PDF
    In a compact power electronics systems such as converters, thermal interaction between components is inevitable. Traditional RC lumped modelling method does not take that into account and this would cause inaccuracy in the predicted temperature in the components of the systems. In this work, numerical simulation have been used to obtain detailed temperature distribution in power devices and the parameters for a Foster network behavior thermal model are extracted so that the thermal interaction can be accounted for and the model can be used to predict temperatures at all critical layers of the components. An ad-hoc conventional three-phase voltage source inverter (DC to AC converter) with a rating of 7.8 KW has been studied in this work as an example of the application of the proposed framework. The key component in the converter is a 75A11200V rated IGBT module. A power electronics circuit simulator is used to predict the power losses in the IGBT module and a Finite Element Analysis software is used to obtain the transient temperature profile in the module and the behaviour thermal model parameters are extracted using curve-fit approach. The resulting combined electro-thermal model is analysed using the circuit simulator again to obtain the temperature for various loading conditions. The results show that the proposed method can significantly improve the accuracy of predicted temperatures in the IGBT modules

    Mission Profile based System-Level Lifetime Prediction of Modular Multilevel Converters

    Get PDF

    Health Condition Assessment of Multi-Chip IGBT Module with Magnetic Flux Density

    Get PDF
    To achieve efficient conversion and flexible control of electronic energy, insulated gate bipolar transistor (IGBT) power modules as the dominant power semiconductor devices are increasingly applied in many areas such as electric drives, hybrid electric vehicles, railways, and renewable energy systems. It is known that IGBTs are the most vulnerable components in power converter systems. To achieve high power density and high current capability, several IGBT chips are connected in parallel as a multi-chip IGBT module, which makes the power modules less reliable due to a more complex structure. The lowered reliability of IGBT modules will not only cause safety problems but also increase operation costs due to the failure of IGBT modules. Therefore, the reliability of IGBTs is important for the overall system, especially in high power applications. To improve the reliability of IGBT modules, this thesis proposes a new health state assessment model with a more sensitive precursor parameter for multi-chip IGBT module that allows for condition-based maintenance and replacement prior to complete failure. Accurate health condition monitoring depends on the knowledge of failure mechanism and the selection of highly sensitive failure precursor. IGBT modules normally wear out and fail due to thermal cycling and operating environment. To enhance the understanding of the failure mechanism and the external characteristic performance of multi-chip IGBT modules, an electro-thermal finite element model (FEM) of a multi-chip IGBT module used in wind turbine converter systems was established with considerations for temperature dependence of material property, the thermal coupling effect between components, and the heat transfer process. The electro-thermal FEM accurately performed temperature distribution and the distribution electrical characteristic parameters during chip solder degradation. This study found an increased junction temperature, large change of temperature distribution, and more serious imbalanced current sharing during a single chip solder aging, thereby accelerating the aging of the whole IGBT module. According to the change of thermal and electrical parameters with chip solder fatigue, the sensitivity of fatigue sensitive parameters (FSPs) was analyzed. The collector current of the aging chip showed the highest sensitivity with the chip solder degradation compared with the junction temperature, case temperature, and collector-emitter voltage. However, the current distribution of internal components remains inaccessible through direct measurements or visual inspection due to the package. As the relationship between the current and magnetic field has been studied and gradually applied in sensor technologies, magnetic flux density was proposed instead of collector current as a new precursor for health condition monitoring. Magnetic flux density distribution was extracted by an electro-thermal-magnetic FEM of the multi-chip IGBT module based on electromagnetic theory. Simulation results showed that magnetic flux density had even higher sensitivity than collector current with chip solder degradation. In addition, the magnetic flux density was only related with the current and was not influenced by temperature, which suggested good selectivity. Therefore, the magnetic flux density was selected as the precursor due to its better sensitivity, selectivity, and generality. Finally, a health state assessment model based on backpropagation neural network (BPNN) was established according to the selected precursor. To localize and evaluate chip solder degradation, the health state of the IGBT module was determined by the magnetic flux density for each chip and the corresponding operating conduction current. BPNN featured good self-learning, self-adapting, robustness and generalization ability to deal with the nonlinear relationship between the four inputs and health state. Experimental results showed that the proposed model was accurate and effective. The health status of the IGBT modules was effectively recognized with an overall recognition rate of 99.8%. Therefore, the health state assessment model built in this thesis can accurately evaluate current health state of the IGBT module and support condition-based maintenance of the IGBT module

    Modeling Solder Ball Array Interconnects for Power Module Optimization

    Get PDF
    PowerSynth is a software platform that can co-optimize power modules utilizing a 2D topology and wire bond interconnects. The novel 3D architectures being proposed at the University of Arkansas utilize solder ball interconnects instead of wire bonds. Therefore, they currently cannot be optimized using PowerSynth. This paper examines methods to accurately model the parasitic inductance of solder balls and ball grid arrays so they may be implemented into software for optimization. Proposed mathematical models are validated against ANSYS Electromagnetics Suite simulations. A comparison of the simulated data shows that mathematical models are well suited for implementation into optimization software platforms. Experimental measurements proved to be inconclusive and necessitate future work

    A temperature gradient based Condition Estimation Method for IGBT Module

    Get PDF
    The paper presents a temperature gradient based method for device state evaluation, taking the insulated Gated Bipolar Transistor (IGBT) modules as an example investigation. Firstly, theoretical basis of this method is presented and the results from example calculation on temperature gradient indicate that the increased thermal resistance and power loss of IGBT modules would increase the temperature gradient. Then an electrical-thermal- mechanical finite element method (FEM) model of IGBT modules, which takes the material temperature-dependent characteristic into account, is utilized to estimate the temperature gradient distribution for both healthy and fatigue conditions. It is found that the temperature gradient varies with power loss. Furthermore, both the experimental and simulation investigation on the temperature gradient for different conditions were conducted, and it is concluded that the temperature gradient can not only track the change of power loss, but have a better sensitivity compared with temperature distribution. In addition, the temperature gradient can reflect the defects location and distinguish failures degree. In the end the influence on the temperature gradient distribution caused by solder fatigue, void and delamination are discussed

    System level power integrity transient analysis using a physics-based approach

    Get PDF
    With decreasing supply voltage level and massive demanding current on system chipset, power integrity design becomes more and more critical for system stability. The ultimate goal of well-designed power delivery network (PDN) is to deliver desired voltage level from the source to destination, in other words, to minimize voltage noise delivered to digital devices. The thesis is composed of three parts. The first part focuses on-die level power models including simplified chip power model (CPM) for system level analysis and the worst scenario current profile. The second part of this work introduces the physics-based equivalent circuit model to simplify the passive PDN model to RLC circuit netlist, to be compatible with any spice simulators and tremendously boost simulation speed. Then a novel system/chip level end-to-end transient model is proposed, including the die model and passive PDN model discussed in previous two chapters as well as a SIMPLIS based small signal VRM model. In the last part of the thesis, how to model voltage regulator module (VRM) is explicitly discussed. Different linear approximated VRM modeling approaches have been compared with the SIMPLIS small signal VRM model in both frequency domain and time domain. The comparison provides PI engineers a guideline to choose specific VRM model under specific circumstances. Finally yet importantly, a PDN optimization example was given. Other than previous PDN optimization approaches, a novel hybrid target impedance concept was proposed in this thesis, in order to improve system level PDN optimization process --Abstract, page iv
    • …
    corecore