110,235 research outputs found

    A study of existing Ontologies in the IoT-domain

    Get PDF
    Several domains have adopted the increasing use of IoT-based devices to collect sensor data for generating abstractions and perceptions of the real world. This sensor data is multi-modal and heterogeneous in nature. This heterogeneity induces interoperability issues while developing cross-domain applications, thereby restricting the possibility of reusing sensor data to develop new applications. As a solution to this, semantic approaches have been proposed in the literature to tackle problems related to interoperability of sensor data. Several ontologies have been proposed to handle different aspects of IoT-based sensor data collection, ranging from discovering the IoT sensors for data collection to applying reasoning on the collected sensor data for drawing inferences. In this paper, we survey these existing semantic ontologies to provide an overview of the recent developments in this field. We highlight the fundamental ontological concepts (e.g., sensor-capabilities and context-awareness) required for an IoT-based application, and survey the existing ontologies which include these concepts. Based on our study, we also identify the shortcomings of currently available ontologies, which serves as a stepping stone to state the need for a common unified ontology for the IoT domain.Comment: Submitted to Elsevier JWS SI on Web semantics for the Internet/Web of Thing

    Semantic integrity in data warehousing : a framework for understanding : a thesis presented in partial fulfilment of the requirements for the degree of Masters of Business Studies in Information Systems at Massey University, Palmerston North, New Zealand

    Get PDF
    Data modelling has gathered an increasing amount of attention by data warehouse developers as they come to realise that important implementation decisions such as data integrity, performance and meta data management, depend on the quality of the underlying data model. Not all organisations model their data but where they do, Entity-Relationship (E-R) modelling, or more correctly relational modelling, has been widely used. An alternative, dimensional modelling, has been gaining acceptance in recent years and adopted by many practitioners. Consequently, there is much debate over which form of modelling is the most appropriate and effective. However, the dimensional model is in fact based on the relational model and the two models are not so different that a debate is necessary. Perhaps, the real focus should be on how to abstract meaning out of the data model. This research explores the importance of semantic integrity during data warehouse design and its impact on the successful use of the implemented warehouse. This has been achieved through a detailed case study. Consequently, a conceptual framework for describing semantic integrity has been developed. The purpose of the framework is to provide a theoretical basis for explaining how a data model is interpreted through the meaning levels of understanding, connotation and generation, and also how a data model is created from an existing meaning structure by intention, generation and action. The result of this exploration is the recognition that the implementation of a data warehouse may not assist with providing a detailed understanding of the semantic content of a data warehouse

    Approaches to Semantic Web Services: An Overview and Comparison

    Get PDF
    Abstract. The next Web generation promises to deliver Semantic Web Services (SWS); services that are self-described and amenable to automated discovery, composition and invocation. A prerequisite to this, however, is the emergence and evolution of the Semantic Web, which provides the infrastructure for the semantic interoperability of Web Services. Web Services will be augmented with rich formal descriptions of their capabilities, such that they can be utilized by applications or other services without human assistance or highly constrained agreements on interfaces or protocols. Thus, Semantic Web Services have the potential to change the way knowledge and business services are consumed and provided on the Web. In this paper, we survey the state of the art of current enabling technologies for Semantic Web Services. In addition, we characterize the infrastructure of Semantic Web Services along three orthogonal dimensions: activities, architecture and service ontology. Further, we examine and contrast three current approaches to SWS according to the proposed dimensions

    Context-adaptive learning designs by using semantic web services

    Get PDF
    IMS Learning Design (IMS-LD) is a promising technology aimed at supporting learning processes. IMS-LD packages contain the learning process metadata as well as the learning resources. However, the allocation of resources - whether data or services - within the learning design is done manually at design-time on the basis of the subjective appraisals of a learning designer. Since the actual learning context is known at runtime only, IMS-LD applications cannot adapt to a specific context or learner. Therefore, the reusability is limited and high development costs have to be taken into account to support a variety of contexts. To overcome these issues, we propose a highly dynamic approach based on Semantic Web Services (SWS) technology. Our aim is moving from the current data- and metadata-based to a context-adaptive service-orientated paradigm We introduce semantic descriptions of a learning process in terms of user objectives (learning goals) to abstract from any specific metadata standards and used learning resources. At runtime, learning goals are accomplished by automatically selecting and invoking the services that fit the actual user needs and process contexts. As a result, we obtain a dynamic adaptation to different contexts at runtime. Semantic mappings from our standard-independent process models will enable the automatic development of versatile, reusable IMS-LD applications as well as the reusability across multiple metadata standards. To illustrate our approach, we describe a prototype application based on our principles

    About the nature of Kansei information, from abstract to concrete

    Get PDF
    Designer’s expertise refers to the scientific fields of emotional design and kansei information. This paper aims to answer to a scientific major issue which is, how to formalize designer’s knowledge, rules, skills into kansei information systems. Kansei can be considered as a psycho-physiologic, perceptive, cognitive and affective process through a particular experience. Kansei oriented methods include various approaches which deal with semantics and emotions, and show the correlation with some design properties. Kansei words may include semantic, sensory, emotional descriptors, and also objects names and product attributes. Kansei levels of information can be seen on an axis going from abstract to concrete dimensions. Sociological value is the most abstract information positioned on this axis. Previous studies demonstrate the values the people aspire to drive their emotional reactions in front of particular semantics. This means that the value dimension should be considered in kansei studies. Through a chain of value-function-product attributes it is possible to enrich design generation and design evaluation processes. This paper describes some knowledge structures and formalisms we established according to this chain, which can be further used for implementing computer aided design tools dedicated to early design. These structures open to new formalisms which enable to integrate design information in a non-hierarchical way. The foreseen algorithmic implementation may be based on the association of ontologies and bag-of-words.AN
    • …
    corecore